江西省抚州市临川二中、临川二中实验学校2025届高一上数学期末调研试题含解析_第1页
江西省抚州市临川二中、临川二中实验学校2025届高一上数学期末调研试题含解析_第2页
江西省抚州市临川二中、临川二中实验学校2025届高一上数学期末调研试题含解析_第3页
江西省抚州市临川二中、临川二中实验学校2025届高一上数学期末调研试题含解析_第4页
江西省抚州市临川二中、临川二中实验学校2025届高一上数学期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川二中、临川二中实验学校2025届高一上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则2.如图所示的时钟显示的时刻为3:30,此时时针与分针的夹角为.若一个扇形的圆心角为a,弧长为10,则该扇形的面积为()A. B.C. D.3.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.4.的定义域为()A. B.C. D.5.已知函数,,的零点分别,,,则,,的大小关系为()A. B.C. D.6.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.7.设,,,则,,三者的大小关系是()A. B.C. D.8.已知,则它们的大小关系是()A. B.C. D.9.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1C.-1 D.-310.已知定义在R上的函数是奇函数,设,,,则有()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,若,则________.12.函数的最小值是________.13.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.14.如图,扇形的面积是,它的周长是,则弦的长为___________.15.已知正数a,b满足,则的最小值为______16.函数(且)的图像恒过定点______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其图像过点,相邻两条对称轴之间的距离为(1)求函数的解析式;(2)将函数的图像上每一点的横坐标伸长到原来的2倍,纵坐标保持不变,得到函数的图像,若方程在上有两个不相等的实数解,求实数m的取值范围18.阅读与探究人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章小结中写道:将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.依据上述材料,利用正切线可以讨论研究得出正切函数的性质.比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;(2)根据阅读材料中途1.2-7,若角为锐角,求证:.19.已知函数在区间上的最大值为6,(1)求常数m的值;(2)若,且,求的值.20.已知函数(1)求证:用单调性定义证明函数是上的严格减函数;(2)已知“函数的图像关于点对称”的充要条件是“对于定义域内任何恒成立”.试用此结论判断函数的图像是否存在对称中心,若存在,求出该对称中心的坐标;若不存在,说明理由;(3)若对任意,都存在及实数,使得,求实数的最大值.21.素有“天府之国”美称的四川省成都市,属于亚热带季风性湿润气候.据成都市气象局多年的统计资料显示,成都市从1月份到12月份的平均温(℃)与月份数(月)近似满足函数,从1月份到7月份的月平均气温的散点图如下图所示,且1月份和7月份的平均气温分别为成都全年的最低和最高的月平均气温.(1)求月平均气温(℃)与月份数(月)的函数解析式;(2)推算出成都全年月平均气温低于但又不低于的是哪些月份.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,,故选D.考点:点线面的位置关系.2、D【解析】先求出,再由弧长公式求出扇形半径,代入扇形面积公式计算即可.【详解】由图可知,,则该扇形的半径,故面积.故选:D3、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B4、C【解析】由对数函数的性质及分式的性质解不等式即可得解.【详解】由题意得,解得,所以的定义域为.故选:C.【点睛】本题考查了具体函数定义域的求解,属于基础题.5、A【解析】判断出三个函数的单调性,可求出,,并判断,进而可得到答案【详解】因为在上递增,当时,,所以;因为在上递增,当时,恒成立,故的零点小于0,即;因为在上递增,当时,,故,故.故选:A.6、D【解析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【点睛】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.7、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D8、B【解析】根据幂函数、指数函数性质判断大小关系.【详解】由,所以.故选:B9、D【解析】∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故选D10、D【解析】根据函数是奇函数的性质可求得m,再由函数的单调性和对数函数的性质可得选项.【详解】解:因为函数的定义在R上的奇函数,所以,即,解得,所以,所以在R上单调递减,又因为,,所以故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】若两个集合相等,则两个集合中的元素完全相同.,又,故答案为0.点睛:利用元素的性质求参数的方法(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值;(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验.12、2【解析】直接利用基本不等式即可得出答案.【详解】解:因为,所以,当且仅当,即时,取等号,所以函数的最小值为2.故答案为:2.13、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:214、【解析】由扇形弧长、面积公式列方程可得,再由平面几何的知识即可得解.【详解】设扇形的圆心角为,半径为,则由题意,解得,则由垂径定理可得.故答案为:.15、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:16、【解析】根据指数函数恒过定点的性质,令指数幂等于零即可.【详解】由,.此时.故图像恒过定点.故答案为:【点睛】本题主要考查指数函数恒过定点的性质,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件依次计算出,即可作答.(2)由(1)求出函数的解析式,再探讨在上的性质,结合图象即可作答.【小问1详解】因图像的相邻两条对称轴之间的距离为,则周期,解得,又,即,而,即,则,即,所以函数的解析式.【小问2详解】依题意,,当时,,而函数在上递增,在上递减,由得,由得,因此,函数在上单调递增,函数值从增到2,在上单调递减,函数值从2减到1,又是图象的一条对称轴,直线与函数在上的图象有两个公共点,当且仅当,如图,于是得方程在上有两个不相等的实数解时,当且仅当,所以实数m的取值范围.18、(1)见解析(2)见解析【解析】(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到.解析:(1)当时,增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数.(2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又,而,故即.点睛:三角函数线是研究三角函数性质(如定义域、值域、周期性、奇偶性等)的重要工具,它体现了数形结合的数学思想,是解三角不等式、三角方程等不可或缺的工具.19、(1);(2)【解析】(1)利用二倍角公式以及辅助角公式可得,再利用三角函数的性质即可求解.(2)代入可得,从而求出,再利用诱导公式即可求解.【详解】(1),因为,则,所以,解得.(2),即,解得,,,所以,,又,所以.20、(1)见解析;(2)存在,为;(3)2.【解析】(1)先设,然后利用作差法比较与的大小即可判断;假设函数的图像存在对称中心,(2)结合函数的对称性及恒成立问题可建立关于,的方程,进而可求,;(3)由已知代入整理可得,的关系,然后结合恒成立可求的范围,进而可求【小问1详解】设,则,∴,∴函数是上的严格减函数;【小问2详解】假设函数的图像存在对称中心,则恒成立,整理得恒成立,∴,解得,,故函数的对称中心为;【小问3详解】∵对任意,,都存在,及实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论