版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省株洲市茶陵县二中高二数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在△ABC中,角A,B,C所对的边分别是a,b,c,若c=1,B=45°,cosA=,则b等于()A. B.C. D.2.已知,则在方向上的投影为()A. B.C. D.3.已知是直线的方向向量,为平面的法向量,若,则的值为()A. B.C.4 D.4.已知数列{an}的前n项和为Sn,满足a1=1,-=1,则an=()A.2n-1 B.nC.2n-1 D.2n-15.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则6.设是公比为的等比数列,则“”是“为递增数列”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件7.已知圆的方程为,则圆心的坐标为()A. B.C. D.8.正方体中,E、F分别是与的中点,则直线ED与所成角的余弦值是()A. B.C. D.9.双曲线的渐近线的斜率是()A.1 B.C. D.10.圆心在直线上,且过点,并与直线相切的圆的方程为()A. B.C. D.11.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.12.若数列为等差数列,数列为等比数列,则下列不等式一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一项填空.)14.如图,在矩形中,,,将沿BD所在的直线进行翻折,得到空间四边形.给出下面三个结论:①在翻折过程中,存在某个位置,使得;②在翻折过程中,三棱锥的体积不大于;③在翻折过程中,存在某个位置,使得异面直线与所成角45°.其中所有正确结论的序号是___________.15.过抛物线的焦点作倾斜角为的直线,与抛物线分别交于两点(点在轴上方),_________16.已知一个样本数据为3,3,5,5,5,7,7,现在新加入一个3,一个5,一个7得到一个新样本,则与原样本数据相比,新样本数据平均数______,方差______.(“变大”、“变小”、“不变”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,椭圆:的左顶点到右焦点的距离是3,离心率为(1)求椭圆的标准方程;(2)斜率为的直线经过椭圆的右焦点,且与椭圆相交于,两点.已知点,求的值18.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.19.(12分)设函数.(1)求在处的切线方程;(2)求的极小值点和极大值点.20.(12分)若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.21.(12分)已知公差不为0的等差数列满足:且成等比数列(1)求数列的通项公式;(2)记为数列的前n项和,求证是等差数列22.(10分)已知抛物线的焦点为,点在抛物线上,且的面积为(为坐标原点)(1)求抛物线的标准方程;(2)点、是抛物线上异于原点的两点,直线、的斜率分别为、,若,求证:直线恒过定点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先由cosA的值求出,进而求出,用正弦定理求出b的值.【详解】因为cosA=,所以,所以由正弦定理:,得:.故选:C2、C【解析】利用向量数量积的几何意义即得【详解】,故在方向上的投影为:故选:C3、A【解析】由,可得,再计算即可求解.【详解】由题意可知,所以,即.故选:A4、A【解析】由题可得,利用与的关系即求.【详解】∵a1=1,-=1,∴是以1为首项,以1为公差的等差数列,∴,即,∴当时,,当时,也适合上式,所以故选:A.5、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C6、D【解析】当时,不是递增数列;当且时,是递增数列,但是不成立,所以选D.考点:等比数列7、A【解析】将圆的方程配成标准方程,可求得圆心坐标.【详解】圆的标准方程为,圆心的坐标为.故选:A.8、A【解析】以A为原点建立空间直角坐标系,求出E,F,D,D1点的坐标,利用向量求法求解【详解】如图,以A为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选:A【点睛】本题考查异面直线所成角的求法,属于基础题.9、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B10、A【解析】设圆的圆心,表示出半径,再由圆心到切线距离等于半径即可列出方程求得参数及圆的方程.【详解】∵圆的圆心在直线上,∴设圆心为(a,-a),∵圆过,∴半径r=,又∵圆与相切,∴半径r=,则,解得a=2,故圆心为(2,-2),半径为,故方程为.故选:A.11、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.12、D【解析】对选项A,令即可检验;对选项B,令即可检验;对选项C,令即可检验;对选项D,设出等差数列的首项和公比,然后作差即可.【详解】若,则可得:,故选项A错误;若,则可得:,故选项B错误;若,则可得:,故选项C错误;不妨设的首项为,公差为,则有:则有:,故选项D正确故选:D二、填空题:本题共4小题,每小题5分,共20分。13、充分不必要【解析】由不等式的性质可知,由得,反之代入进行验证,然后根据充分性与必要性的定义进行判断,即可得出所要的答案【详解】解:由不等式的性质可知,由得,故“”成立可推出“”,而,当,则,所以“”不能保证“”,故“”是“”成立的充分不必要条件.故答案为:充分不必要【点睛】本题考查充分条件与必要条件的判断,结合不等式的性质,属于较简单题型14、②③【解析】在矩形中,过点作的垂线,垂足分别为,对于①,连接,假设存在某个位置,使得,则可得到,进而得矛盾,可判断;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,再根据几何关系计算即可;对于③,由题知,,设平面与平面所成的二面角为,进而得,进而得异面直线与所成角的余弦值的范围为,即可判断.【详解】解:如图1,在矩形中,过点作的垂线,垂足分别为,则在在翻折过程中,形成如图2的几何体,故对于①,连接,假设存在某个位置,使得,由于,,所以平面,所以,这与图1中的与不垂直矛盾,故错误;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,此时,体积为,故三棱锥的体积不大于,故正确;对于③,,,由②的讨论得,所以,所以,设翻折过程中,平面与平面所成的二面角为,所以,故,由于要使直线与为异面直线,所以,所以,所以,所以异面直线与所成角的余弦值的范围为,由于,所以在翻折过程中,存在某个位置,使得异面直线与所成角为45°.故答案为:②③15、3【解析】根据抛物线焦半径公式,所以.故答案为:3.16、①.不变②.变大【解析】通过计算平均数和方差来确定正确答案.【详解】原样本平均数为,原样本方差为,新样本平均数为,新样本方差为.所以平均数不变,方差变大.故答案为:不变;变大三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意得到关于的方程,解之即可求出结果;(2)联立直线的方程与椭圆方程,结合韦达定理以及平面向量数量积的坐标运算即可求出结果.【小问1详解】因为椭圆的左顶点到右焦点的距离是3,所以又椭圆的离心率是,所以,解得,,从而所以椭圆的标准方程【小问2详解】因为直线的斜率为,且过右焦点,所以直线的方程为联立直线的方程与椭圆方程,消去,得,其中设,,则,因为,所以因此的值是18、(1)(2)【解析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,R三点共线时,取得最小值,此时,解得,所以的方程为.小问2详解】因为AB,OC互相垂直平分,所以四边形AOBC是菱形.由,得轴,设点,则,由抛物线的对称性知,,,.由,得,解得,所以在菱形中,,边上的高,所以菱形的面积.19、(1);(2)极大值点,极小值点.【解析】(1)求函数的导数,利用函数的导数求出切线的斜率,结合切点坐标,然后求解切线方程;(2)利用导数研究f(x)的单调性,判断函数的极值点即可【小问1详解】函数,函数的导数为,,在处的切线方程:,即【小问2详解】令,,解得,当时,可得,即的单调递减区间,或,可得,∴函数单调递增区间,,的极大值点,极小值点20、(1)(2)【解析】(1)令,则,根据二次函数的性质即可求出;(2)令,方程化为,求出的变化情况即可求出.【小问1详解】令,则,则题目等价于在的最大值为9,最小值为1,对称轴,开口向上,则,解得;【小问2详解】令,则,于是方程可变为,即,因为函数在单调递减,在单调递增,且,要使方程有两个不同的解,则与有两个不同的交点,所以.21、(1);(2)证明见解析.【解析】(1)根据等比中项的应用可得,结合等差数列的定义和求出公差,进而得出通项公式;(2)根据等差数列前n项求和公式可得,结合等差数列定义即可证明.【小问1详解】设等差数列的公差为(),由成等比数列,得,又,所以,解得,所以;【小问2详解】由(1)可得,所以,有,故,又,所以数列是以2为首项,以2为公差的等差数列.22、(1);(2)证明见解析.【解析】(1)由点在抛物线上可得出,再利用三角形的面积公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 掌声 微课教育课件
- 七下历史 教育课件
- 2024版长期房屋租赁合同(商业用途)2篇
- 2024年度礼品定制生产及供应合同2篇
- 供应链金融合作协议范本
- 买房押金合同协议书范本
- 2024年度二人合伙经营咖啡厅合同2篇
- 2024年度版权质押合同:某音乐公司与某金融机构关于音乐版权质押融资
- 咏柳 音乐课件
- 2024年度知识产权许可合同许可范围和许可条件具体规定
- 2024年网络安全知识竞赛考试题库500题(含答案)
- 2024年湖北襄阳四中五中自主招生英语试卷真题(含答案详解)
- DB34T-老旧电梯更新、改造、重大修理工作导则
- 施工现场临时用电安全监理检查表
- 不符合慢病证办理告知书
- GB/T 44230-2024政务信息系统基本要求
- 《数字媒体技术导论》全套教学课件
- 海南乐东黎族自治县事业单位定向公开招聘驻县部队随军家属工作人员5人(第1号)(高频重点复习提升训练)共500题附带答案详解
- GB/T 44257.1-2024电动土方机械用动力电池第1部分:安全要求
- 广东省深圳市宝安区2023-2024学年七年级下学期期末数学试题(无答案)
- 浙教版劳动九年级项目四任务二《统筹规划与工作分配》教案
评论
0/150
提交评论