山东省临沂市第一中学2025届数学高一上期末统考模拟试题含解析_第1页
山东省临沂市第一中学2025届数学高一上期末统考模拟试题含解析_第2页
山东省临沂市第一中学2025届数学高一上期末统考模拟试题含解析_第3页
山东省临沂市第一中学2025届数学高一上期末统考模拟试题含解析_第4页
山东省临沂市第一中学2025届数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂市第一中学2025届数学高一上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递减区间是A. B.C. D.2.已知函数的部分图象如图所示,则的解析式为()A. B.C. D.3.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.4.函数f(x)=的零点所在的一个区间是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)5.的值域是()A. B.C. D.6.,,的大小关系是()A. B.C. D.7.已知函数是定义在上的奇函数,当时,,则不等式的解集为()A. B.C.( D.8.已知角的终边经过点,则的值为()A.11 B.10C.12 D.139.下列各式不正确的是()A.sin(α+)=-sinα B.cos(α+)=-sinαC.sin(-α-2)=-sinα D.cos(α-)=sinα10.已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(且),若对,,都有.则实数a的取值范围是___________12.如果满足对任意实数,都有成立,那么a的取值范围是______13.若,,三点共线,则实数的值是__________14.若,则的取值范围为___________.15.已知关于的不等式的解集为,其中,则的最小值是___________.16.设,向量,,若,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数.(1)求,;(2)求函数在上的最大值与最小值.18.已知向量,,且,满足关系.(1)求向量,的数量积用k表示的解析式;(2)求向量与夹角的最大值.19.给定函数,,,用表示,中的较大者,记为.(1)求函数的解析式并画出其图象;(2)对于任意的,不等式恒成立,求实数的取值范围.20.已知函数,,其中(1)写出的单调区间(无需证明);(2)求在区间上的最小值;(3)若对任意,均存在,使得成立,求实数的取值范围21.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】令,则有或,在上的减区间为,故在上的减区间为,选A2、B【解析】根据图像得到,,计算排除得到答案.【详解】根据图像知选项:,排除;D选项:,排除;根据图像知选项:,排除;故选:【点睛】本题考查了三角函数图像的识别,计算特殊值可以快速排除选项,是解题的关键.3、C【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.4、B【解析】因为函数f(x)=2+3x在其定义域内是递增的,那么根据f(-1)=,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B考点:本试题主要考查了函数零点的问题的运用点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间5、A【解析】先求得的范围,再由单调性求值域【详解】因,所以,又在时单调递增,所以当时,函数取得最大值为,所以值域是,故选:A.6、D【解析】作出弧度角的正弦线、余弦线和正切线,利用三角函数线来得出、、的大小关系.【详解】作出弧度角的正弦线、余弦线和正切线如下图所示,则,,,其中虚线表示的是角的终边,,则,即.故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题.7、C【解析】根据奇偶性求分段函数的解析式,然后作出函数图象,根据单调性解不等式即可.【详解】因为当时,,且函数是定义在上的奇函数,所以时,,所以,作出函数图象:所以函数是上的单调递增,又因为不等式,所以,即,故选:C.8、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论9、B【解析】将视为锐角,根据“奇变偶不变,符号看象限”得出答案.【详解】将视为锐角,∵在第三象限,正弦为负值,且是的2倍为偶数,不改变三角函数的名称,∴,A正确;∵在第四象限,余弦为正值,且是的3倍为奇数数,要改变三角函数的名称,∴,B错误;∵,在第四象限,正弦为负值,且0是的0倍为偶数,不改变三角函数的名称,∴,C正确;∵在第四象限,余弦为正值,且是的1倍为奇数,要改变三角函数的名称,∴,D正确.故选:B.10、D【解析】先把化成,求出的零点的一般形式为,根据在区间内没有零点可得关于的不等式组,结合为整数可得其相应的取值,从而得到所求的取值范围.【详解】由题设有,令,则有即因为在区间内没有零点,故存在整数,使得,即,因为,所以且,故或,所以或,故选:D.【点睛】本题考查三角函数在给定范围上的零点的存在性问题,此类问题可转化为不等式组的整数解问题,本题属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:12、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.13、5【解析】,,三点共线,,即,解得,故答案为.14、【解析】一元二次不等式,对任意的实数都成立,与x轴最多有一个交点;由对勾函数的单调性可以求出m的范围.【详解】由,得.由题意可得,,即.因为,所以,故.故答案为:15、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:16、【解析】根据向量共线的坐标表示,得到,再由二倍角的正弦公式化简整理,即可得出结果.【详解】∵,向量,,∴,∴,∵,∴故答案为:.【点睛】本题主要考查由向量共线求参数,涉及二倍角的正弦公式,熟记向量共线的坐标表示即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2),【解析】(1)首先利用两角和的正弦公式及辅助角公式将函数化简,再代入求值即可;(2)由的取值范围求出的范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为所以即,所以,【小问2详解】解:由(1)可知,∵,∴,∴,∴,∴,令,即时取到最大值,,令,即时取到最小值.18、(1),(2)【解析】(1)化简即得;(2)设与的夹角为,求出,再求函数的最值得解.【详解】(1)由已知.,,,.(2)设与的夹角为,则,,当即时,取到最小值为.又,与夹角的最大值为.【点睛】本题主要考查向量的数量积运算,考查向量夹角的计算和函数最值的求解,意在考查学生对这些知识的理解掌握水平和计算能力.19、(1),作图见解析;(2).【解析】(1)根据题意,分类讨论,结合一元二次不等式的解法进行求解并画出图象即可;(2)构造新函数,利用分类讨论思想,结合二次函数的性质进行求解即可.【小问1详解】①当即时,,则,②当即或时,,则,故图象如下:【小问2详解】由(1)得,当时,,则在上恒成立等价于在上恒成立.令,,原问题等价于在上的最小值.①当即时,在上单调递增,则,故.②当即时,在上单调递减,在上单调递增,则,由时,,故不合题意.综上所述,实数的取值范围为.20、(1)的单调递增区间是,单调递减区间是(2)(3)【解析】(1)利用去掉绝对值及一次函数的性质即可求解;(2)根据(1)的结论,利用单调性与最值的关系即可求解;(3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况讨论即可求解.【小问1详解】由,得,所以函数的单调递增区间是,单调递减区间是,【小问2详解】由(1)知,函数的单调递增区间是,单调递减区间是,当,即时,当时,函数取得最小值为,当,即时,当时,函数取得最小值为,综上所述,函数在区间上的最小值为.【小问3详解】因为对任意,均存在,使得成立等价于,,.而当时,,故必有由第(2)小题可知,,且,所以,①当时,∴,可得,②当时,∴,可得,③当时,∴或,可得,综上所述,实数的取值范围为21、(1)(2)(3)【解析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论