吉林市第一中学2025届数学高一上期末质量检测试题含解析_第1页
吉林市第一中学2025届数学高一上期末质量检测试题含解析_第2页
吉林市第一中学2025届数学高一上期末质量检测试题含解析_第3页
吉林市第一中学2025届数学高一上期末质量检测试题含解析_第4页
吉林市第一中学2025届数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林市第一中学2025届数学高一上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在同一直角坐标系中,函数和(且)的图像可能是()A. B.C. D.2.已知集合,下列结论成立是()A. B.C. D.3.幂函数的图象过点,则函数的值域是()A. B.C. D.4.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为()A.1 B.2C.3 D.45.已知集合,集合,则()A.0 B.C. D.6.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm37.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R8.函数y=8x2-(m-1)x+m-7在区间(-∞,-]上单调递减,则m的取值范围为()A. B.C. D.9.已知函数,则下列结论错误的是()A.的一个周期为 B.的图象关于直线对称C.的一个零点为 D.在区间上单调递减10.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)二、填空题:本大题共6小题,每小题5分,共30分。11.直线l与平面α所成角为60°,l∩α=A,则m与l所成角的取值范围是_______.12.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.13.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________14.函数的递减区间是__________.15.函数的定义域是__________16.若,其中,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:18.已知函数是定义在R上的奇函数,当时,(Ⅰ)求函数在R上的解析式;(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由19.在平面直角坐标系中,设二次函数的图像与两坐标轴有三个交点,经过这三点的圆记为(1)求圆的方程;(2)若过点的直线与圆相交,所截得的弦长为4,求直线的方程.20.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.21.已知函数,)函数关于对称.(1)求的解析式;(2)用五点法在下列直角坐标系中画出在上的图象;(3)写出的单调增区间及最小值,并写出取最小值时自变量的取值集合

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用函数的奇偶性及对数函数的图象的性质可得.【详解】由函数,可知函数为偶函数,函数图象关于轴对称,可排除选项AC,又的图象过点,可排除选项D.故选:B.2、C【解析】利用集合的交、并、补运算进行判断.【详解】因为,所以,故A错;,故B错;,故D错.故选:C3、C【解析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【详解】设,代入点得,则,令,函数的值域是.故选:C.4、C【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果.【详解】奇函数的定义域为R,其图象为一条连续不断的曲线,得,由得,所以,故函数在之间至少存在一个零点,由奇函数的性质可知函数在之间至少存在一个零点,所以函数在之间至少存在3个零点.故选:C5、B【解析】由集合的表示方法以及交集的概念求解.【详解】由题意,集合,,∴.故选:B6、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.7、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题8、A【解析】求出函数的对称轴,得到关于m的不等式,解出即可【详解】函数的对称轴是,若函数在区间上单调递减,则,解得:m≥0,故选A【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键9、B【解析】根据周期求出f(x)最小正周期即可判断A;判断是否等于1或-1即可判断是否是其对称轴,由此判断B;判断否为0即可判断C;,根据复合函数单调性即可判断f(x)单调性,由此判断D.【详解】函数,最小正周期为故A正确;,故直线不是f(x)的对称轴,故B错误;,则,∴C正确;,∴f(x)在上单调递减,故D正确.故选:B.10、A【解析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,直线l与平面α所成角的范围,即可求出结果【详解】由于直线l与平面α所成角为60°,直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,而异面直线所成角的范围是(0,],直线m在平面α内,且与直线l异面,故m与l所成角的取值范围是.故答案为【点睛】本题考查直线和平面所成的角的定义和范围,判断直线与平面所成角是直线与平面α内所有直线成的角中最小的一个,是解题的关键12、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.13、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.14、【解析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【点睛】本题主要考查对数型复合函数的单调区间,属于基础题15、【解析】要使函数有意义,则,解得,函数的定义域是,故答案为.16、;【解析】因为,所以点睛:三角函数求值三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.18、(Ⅰ);(Ⅱ)存在实数使得的最小值为【解析】Ⅰ根据奇函数的对称性进行转化求解即可Ⅱ求出的表达式,利用换元法转化为一元二次函数,通过讨论对称轴与区间的关系,判断最小值是否满足条件即可【详解】Ⅰ若,则,∵当时,且是奇函数,∴当时,,即当时,,则Ⅱ若,,设,∵,∴,则等价为,对称轴为,若,即时,在上为增函数,此时当时,最小,即,即成立,若,即时,在上为减函数,此时当时,最小,即,此时不成立,若,即时,在上不单调,此时当时,最小,即,此时在时是减函数,当时取得最小值为,即此时不满足条件综上只有当才满足条件即存在存在实数使得最小值为【点睛】本题主要考查函数奇偶性的应用,以及利用换元法转化为一元二次函数,结合一元二次函数单调性的性质是解决本题的关键,综合性较强,运算量较大,有一定的难度19、(1);(2)或【解析】(1)先求得圆三个交点,,由和的垂直平分线得圆心,进而得半径;(2)易得圆心到直线的距离为1,讨论直线斜率不存在和存在时,利用圆心到直线的距离求解即可.试题解析:二次函数的图像与两坐标轴轴的三个交点分别记为(1)线段的垂直平分线为,线段的垂直平分线,两条中垂线的交点为圆心,又半径,∴圆的方程为:(2)已知圆的半径,弦长为4,所以圆心到直线的距离为1,若直线斜率不存在时,即时,满足题意;当直线斜率存在时,设直线斜率存在为,直线方程为,此时直线方程为:,所以直线的方程为:或.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小20、(1)1(2)(3)存在,【解析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再利用换元法,结合二次方程根的关系求解即可.【小问1详解】解:因为是定义在上的奇函数,所以,即,得.此时,,满足.所以【小问2详解】解:由(1)知,,且,则.∵,∴,,∴,即,故在上增函数∴原不等式可化为,即∴,∴∴,∴原不等式的解集为【小问3详解】解:设存在实数,使得函数在区间上的取值范围是,则,即,∴方程,即有两个不相等的实数根∴方程有两个不相等的实数根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论