版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市田家炳中学2025届高二数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,若直线与直线平行,则的值为()A. B.C.或 D.2.椭圆上一点到一个焦点的距离为,则到另一个焦点的距离是()A. B.C. D.3.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.4.执行如图所示的程序框图,则输出的结果为()A. B.C. D.5.已知函数为偶函数,则在处的切线方程为()A. B.C. D.6.已知双曲线的焦点为,,其渐近线上横坐标为的点满足,则()A. B.C.2 D.47.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.78.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.设抛物线的焦点为,点为抛物线上一点,点坐标为,则的最小值为()A. B.C. D.10.平行六面体中,若,则()A. B.1C. D.11.已知数列的通项公式是,则()A10100 B.-10100C.5052 D.-505212.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______14.直线的倾斜角为_______________.15.已知,,若,则______16.经过两点的直线的倾斜角为,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设双曲线的左、右焦点分别为,,且,一条渐近线的倾斜角为60°(1)求双曲线C的标准方程和离心率;(2)求分别以,为左、右顶点,短轴长等于双曲线虚轴长的椭圆的标准方程18.(12分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面19.(12分)已知函数f(x)=ax-2lnx(1)讨论f(x)的单调性;(2)设函数g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范围20.(12分)已知中,内角的对边分别为,且满足.(1)求的值;(2)若,求面积的最大值.21.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由22.(10分)已知椭圆焦距为,点在椭圆C上(1)求椭圆C的方程;(2)过点的直线与C交于M,N两点,点R是直线上任意一点,设直线的斜率分别为,若,求的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的一般式判断平行的条件进行计算.【详解】时,容易验证两直线不平行,当时,根据两直线平行的条件可知:,解得或.故选:C.2、B【解析】利用椭圆的定义可得结果.【详解】在椭圆中,,由椭圆的定义可知,到另一个焦点的距离是.故选:B.3、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.4、B【解析】写出每次循环的结果,即可得到答案.【详解】当时,,,,;,此时,退出循环,输出的的为.故选:B【点睛】本题考查程序框图的应用,此类题要注意何时循环结束,建议数据不大时采用写出来的办法,是一道容易题.5、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.6、B【解析】由题意可设,则,再由,可得,从而可求出的值【详解】解:双曲线的渐近线方程为,故设,设,则,因为,所以,即,所以,因为,所以,因为,所以,故选:B7、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D8、D【解析】根据复数在复平面内的坐标表示可得答案.【详解】解:由题意得:在复平面上对应的点为,该点在第四象限.故选:D9、B【解析】设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,进而把问题转化为求|PM|+|PD|的最小值,即可求解【详解】解:由题意,设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,当D,P,M三点共线时,|PM|+|PD|取得最小值为故选:B10、D【解析】根据空间向量的运算,表示出,和已知比较可求得的值,进而求得答案.【详解】在平行六面体中,有,故由题意可知:,即,所以,故选:D.11、D【解析】根据已知条件,用并项求和法即可求得结果.【详解】∵∴∴.故选:D.12、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:14、【解析】由直线的斜率为,得到,即可求解.【详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.15、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:16、2【解析】由两点间的斜率公式及直线斜率的定义即可求解.【详解】解:因为过两点的直线的倾斜角为,所以,解得,故答案为:2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),2(2)【解析】(1)结合,联立即得解;(2)由题意,即得解.【详解】(1)由题意,又解得:故双曲线C的标准方程为:,离心率为(2)由题意椭圆的焦点在轴上,设椭圆方程为故即椭圆方程为:18、(1)证明见解析(2)证明见解析【解析】(1)根据直棱柱的性质、平行四边形的性质,结合三角形中位线定理、线面平行的判定定理进行证明即可;(2)根据直棱柱的性质、菱形的判定定理和性质,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可.【小问1详解】在直三棱柱中,,且四边形平行四边形,又,则为的中点,又为的中点,故,即:,且平面,平面,所以平面;【小问2详解】在直三棱柱中,平面,平面,则,且,,平面,故平面,因为平面,所以,又在平行四边形中,,则四边形菱形,所以,且,平面,故平面,因为平面,所以平面平面.19、(1)答案见解析;(2).【解析】(1)根据实数a的正负性,结合导数的性质分类讨论求解即可;(2)利用常变量分离法,通过构造函数,利用导数的性质进行求解即可.【小问1详解】当a≤0时,在(0,+∞)上恒成立;当a>0时,令得;令得;综上:a≤0时f(x)在(0,+∞)上单调递减;a>0时,f(x)在上单调递减,在上单调递增;【小问2详解】由题意知ax-2lnx≤x-2在(0,+∞)上有解则ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗极大值↘所以,因此有所以a的取值范围为:【点睛】关键点睛:运用常变量分离法利用导数的性质是解题的关键.20、(1)2;(2).【解析】(1)利用正弦定理以及逆用两角和的正弦公式得出,而,即可求出的值;(2)根据题意,由余弦定理得,再根据基本不等式求得,当且仅当时取得等号,即可求出面积的最大值.【小问1详解】解:由题意得,由正弦定理得:,即,即,因为,所以【小问2详解】解:由余弦定理,即,由基本不等式得:,即,当且仅当时取得等号,,所以面积的最大值为21、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以22、(1);(2).【解析】(1)由焦距为解出,再把点代入椭圆方程中,即可解出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年公司劳动合同补充协议书
- 办公室装修改建合同范本
- 肺癌治疗各研究进展介绍
- 腰椎椎管狭窄的护理
- 电视剧动画制作合同文本
- 手术室手术标本的管理
- 急诊医疗护理查房
- 六年级语文上册22文言文二则-书戴嵩画牛 公开课一等奖创新教学设计
- 胃肠外科护理讲课比赛课件
- 38妇女节社区活动
- 宗祠管理管理制度
- 高中数学联赛之历年真题分类汇编(2015-2021):专题34不等式第三缉(原卷版)
- 【维生素C】大剂量协助你改善各种疾病-钱学森保健、贾平凹乙肝
- 珠宝店消防应急预案范文
- BQ40Z50 软件界面翻译
- 2023年度肿瘤科进修总结
- 《电视纪录片》课件
- 音乐学职业生涯规划书
- 外研版英语八年级上册-Module-7-
- 国开《Windows网络操作系统管理》形考任务2-配置本地帐户与活动目录域服务实训
- 环保设施安全风险评估报告
评论
0/150
提交评论