版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥二中2025届高一数学第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为2的扇形OAB中,已知弦AB的长为2,则的长为A. B.C. D.2.下列各角中,与角1560°终边相同的角是()A.180° B.-240°C.-120° D.60°3.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为()A.2 B.C.1 D.4.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},则集合A∩(∁UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}5.若“”是“”的充分不必要条件,则()A. B.C. D.6.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行7.已知是定义在上的偶函数,那么的最大值是()A.0 B.C. D.18.已知圆心在轴上的圆与直线切于点.若直线与圆相切,则的值为()A.9 B.7C.-21或9 D.-23或79.是定义在上的函数,,且在上递减,下列不等式一定成立的是A. B.C. D.10.设R,则“>1”是“>1”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.计算__________12.,若,则________.13.已知函数(,)的部分图象如图所示,则的值为14.当曲线与直线有两个相异交点时,实数的取值范围是________15.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)16.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,(1)若与垂直,求实数的值;(2)求向量在方向上的投影18.已知是定义在上的奇函数,当时,(1)求的解析式;(2)求不等式的解集.19.已知函数的部分图象如图所示.(1)求函数的解析式和单调增区间;(2)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,若关于的方程在区间上有两个不同的解、,求的值及实数的取值范围.20.在单位圆中,已知第二象限角的终边与单位圆的交点为,若.(1)求、、的值;(2)分别求、、的值.21.已知A(﹣1,0),B(1,0),动点G满足GA⊥GB,记动点G的轨迹为曲线C(1)求曲线C的方程;(2)如图,点M是C上任意一点,过点(3,0)且与x轴垂直的直线为l,直线AM与l相交于点E,直线BM与l相交于点F,求证:以EF为直径的圆与x轴交于定点T,并求出点T的坐标
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由已知可求圆心角的大小,根据弧长公式即可计算得解【详解】设扇形的弧长为l,圆心角大小为,∵半径为2的扇形OAB中,弦AB的长为2,∴,∴故选C【点睛】本题主要考查了弧长公式的应用,考查了数形结合思想的应用,属于基础题2、B【解析】终边相同的角,相差360°的整数倍,据此即可求解.【详解】与1560°终边相同的角为,,当时,.故选:B.3、D【解析】圆心为,点到直线的距离为.故选D.4、A【解析】先求出∁UB,再求A∩(∁UB)即可.【详解】解:由已知∁UB={2,5},所以A∩(∁UB)={2,5}.故选:A.【点睛】本题考查集合的交集和补集的运算,是基础题.5、B【解析】转化“”是“”的充分不必要条件为,分析即得解【详解】由题意,“”是“”的充分不必要条件故故故选:B6、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.7、C【解析】∵f(x)=ax2+bx是定义在[a-1,2a]上偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.8、D【解析】先求得圆的圆心和半径,根据直线若直线与圆相切,圆心到直线的距离等于半径列方程,解方程求得的值.【详解】圆心在轴上圆与直线切于点.可得圆的半径为3,圆心为.因为直线与圆相切,所以由切线性质及点到直线距离公式可得,解得或7.故选:D【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.9、B【解析】对于A,由为偶函数可得,又,由及在上为减函数得,故A错;对于B,因同理可得,故B对;对于C,因无法比较大小,故C错;对于D,取,则;取,则,故与大小关系不确定,故D错,综上,选B点睛:对于奇函数或偶函数,如果我们知道其一侧的单调性,那么我们可以知道另一侧的单调性,解题时注意转化10、A【解析】由可得成立,反之不成立,所以“”是“”的充分不必要条件考点:充分条件与必要条件二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】化简,故答案为.12、【解析】分和两种情况解方程,由此可得出的值.【详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.13、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;14、【解析】由解析式可知曲线为半圆,直线恒过;画出半圆的图象,找到直线与半圆有两个交点的临界状态,利用圆的切线的求解方法和两点连线斜率公式求得斜率的取值范围.【详解】为恒过的直线则曲线图象如下图所示:由图象可知,当直线斜率时,曲线与直线有两个相异交点与半圆相切,可得:解得:又本题正确结果:【点睛】本题考查利用曲线与直线的交点个数求解参数范围的问题,关键是能够通过数形结合的方式找到临界状态,易错点是忽略曲线的范围,误认为曲线为圆.15、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年16、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用坐标运算表示出,由向量垂直的坐标表示可构造方程求得结果;(2)根据可直接求得结果.【详解】(1)与垂直,解得:(2)向量在方向上的投影为:【点睛】本题考查向量垂直关系的坐标表示、向量在方向上的投影的求解;关键是能够由向量垂直得到数量积为零、能熟练掌握投影公式,从而利用向量坐标运算求得结果.18、(1)(2).【解析】(1)当时,,利用,结合条件及可得解;(2)分析可得在上递增,进而得,从而得解.【详解】(1)当时,,则,为上的奇函数,且,;(2)因为当时,,所以在上递增,当时,,所以在上递增,所以在上递增,因为,所以由可得,所以不等式的解集为19、(1),增区间为;(2),.【解析】(1)结合图象和,求得的值,再根据,,求得的解析式,然后利用正弦函数的单调性,即可得解;(2)根据函数图象的变换法则写出的解析式,再结合正弦函数的对称性以及图象,即可得解.【小问1详解】解:设的最小正周期为,由图象可知,则,故,又,所以,即,所以,所以,因为,所以,所以,所以,所以,令,则,故的单调增区间为.【小问2详解】解:将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变),得的图象,由,知,由可得,由可得,若关于的方程在区间上有两个不同的解、,则点、关于直线对称,故,所以,,作出函数与函数在区间上的图象如下图所示:由图可知,当时,即当时,函数与函数在区间上的图象有两个交点.综上所述,,实数的取值范围是.20、(1),,(2),,【解析】(1)先由三角函数的定义得到,再利用同角三角函数基本关系进行求解;(2)利用诱导公式进行化简求值.【小问1详解】解:由三角函数定义,得,由得,又因为为第二象限角,所以,则;【小问2详解】解:由诱导公式,得:,则,.21、(1)x2+y2=1;(2)证明见解析,T(3+2,0)或T(3﹣2,0)【解析】(1)由可得,列出等式即可求动点的轨迹方程;(2)设出点M的坐标,我们可以得到直线AM、直线BM的方程,与直线方程联立求得点E、点F的坐标,进而得到以为直径的圆的方程,最后求出定点坐标.【详解】(1)设G(x,y)(x≠±1),因为GA⊥GB,所以,整理得C的方程为x2+y2=1(x≠±1);(2)设点M(x0,y0)(x0≠±1),且有x02+y02=1,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度汽车运输钢材质量检测合同5篇
- 2024年度股权转让合同股权比例及支付方式
- 三腔二囊管课件
- 2024年度企业重组与并购合同设计要点2篇
- 2024中国石化上海石化分公司毕业生招聘22人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信湖北荆门分公司招聘12人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信吉林通化分公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国建筑股份限公司岗位招聘30人(信息中心)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人保财险限公司江西分公司招聘103人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中交二航局市政建设限公司招聘250人易考易错模拟试题(共500题)试卷后附参考答案
- 认识飞机(课堂PPT)
- 妊娠期高血压疾病护理论文
- 《国歌法》、《国旗法》主题班会
- 人教版九年级物理全册 (电功率)电功率教学课件
- 外研三起四年级上册 Module 8 单元集体备课和教学设计
- 【基于安卓系统的电商APP设计与实现4500字(论文)】
- 2023年历史竞赛题
- 泵的选型原则、依据及步骤
- 教养:曾仕强给中国父母的教子忠告
- 拆船业安全隐患及防范措施
- 劳动创造美好生活中职生劳动教育PPT完整全套教学课件
评论
0/150
提交评论