版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省黄山市徽州区一中2025届高二上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形2.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.33.如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cm B.6cmC.3cm D.4.5cm4.如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()A B.C. D.5.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若,则k的取值范围是()A. B.(-∞,]∪[0,+∞)C. D.6.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.7.曲线的离心率为()A. B.C. D.8.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.49.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.10.如图,执行该程序框图,则输出的的值为()A. B.2C. D.311.已知抛物线的焦点为,抛物线的焦点为,点在上,且,则直线的斜率为A. B.C. D.12.函数的图象大致为()A B.C D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______14.若函数在(0,+∞)内有且只有一个零点,则a的值为_____15.在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)16.已知空间向量,则向量在坐标平面上的投影向量是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.18.(12分)抚州市为了了解学生的体能情况,从全市所有高一学生中按80:1的比例随机抽取200人进行一分钟跳绳次数测试,将所得数据整理后,分为组画出频率分布直方图如图所示,现一,二两组数据丢失,但知道第二组的频率是第一组的3倍(1)若次数在以上含次为优秀,试估计全市高一学生的优秀率是多少?全市优秀学生的人数约为多少?(2)求第一组、第二小组的频率是多少?并补齐频率分布直方图;(3)估计该全市高一学生跳绳次数的中位数和平均数?19.(12分)已知为坐标原点,椭圆的左右焦点分别为,,为椭圆的上顶点,以为圆心且过的圆与直线相切.(1)求椭圆的标准方程;(2)已知直线交椭圆于两点.(ⅰ)若直线的斜率等于,求面积的最大值;(ⅱ)若,点在上,.证明:存在定点,使得为定值.20.(12分)p:方程有两个不等的负实数根;q:方程无实数根,若为真命题,为假命题,求实数m的取值范围、21.(12分)已知椭圆,其上顶点与左右焦点围成的是面积为的正三角形.(1)求椭圆的方程;(2)过椭圆的右焦点的直线(的斜率存在)交椭圆于两点,弦的垂直平分线交轴于点,问:是否是定值?若是,求出定值:若不是,说明理由.22.(10分)在数列中,,,(1)设,证明:数列是等差数列;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C2、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A3、A【解析】根据圆锥和球的体积公式以及半球的体积等于圆锥的体积,即可列式解出【详解】由题意可得,,解得.故选:A4、D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.5、A【解析】圆心为,半径为2,圆心到直线的距离为,解不等式得k的取值范围考点:直线与圆相交的弦长问题6、D【解析】对4个单位分别编号,利用列举法求出概率作答.【详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D7、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.8、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A9、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A10、B【解析】根据程序流程图依次算出的值即可.【详解】,第一次执行,,第二次执行,,第三次执行,,所以输出.故选:B11、B【解析】根据抛物线的定义,求得p的值,即可得抛物线,的标准方程,求得抛物线的焦点坐标后,再根据斜率公式求解.【详解】因为,所以,解得,所以直线的斜率为.故选B.【点睛】本题考查了抛物线的定义的应用,考查了抛物线的简单性质,涉及了直线的斜率公式;抛物线上的点到焦点的距离等于其到准线的距离;解题过程中注意焦点的位置.12、A【解析】利用导数求得的单调区间,结合函数值确定正确选项.【详解】由,可得函数的减区间为,增区间为,当时,,可得选项为A故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题14、a=3【解析】对函数进行求导,分类讨论函数单调性,根据单调性结合已知可以求出a的值.【详解】∵函数在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3故答案为:a=3【点睛】本题考查了利用导数研究已知函数的零点求参数取值问题,考查了分类讨论和数学运算能力.15、4【解析】结合勾股定理求得正确答案.【详解】如图,设村庄为A,开始台风中心的位置为B,台风路径为直线,因为点A到直线的距离为,∴村庄所在地受到台风影响的时间约为:(小时).故答案为:本卷包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答第22题~第23题为选考题,考生根据要求作答16、【解析】根据投影向量的知识求得正确答案.【详解】空间向量在坐标平面上的投影向量是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意作出图形,然后求出关于直线的对称点,进而根据圆的性质求出到圆上的点的最短距离即可;(2)将直线方程代入圆的方程并化简,进而结合韦达定理求得答案.【小问1详解】若军营所在区域为,圆:的圆心为原点,半径为,作图如下:设将军饮马点为,到达营区点为,设为A关于直线的对称点,因为,所以线段的中点为,则,又,联立解得:,即,所以总路程,要使得总路程最短,只需要最短,即点到圆上的点的最短距离,即为.【小问2详解】过点A倾斜角为45°的直线方程为:,设两个交点,联立,消去y得.由韦达定理,,.18、(1)8640;(2)第一组频率为,第二组频率为.频率分布直方图见解析;(3)中位数为,均值为121.9【解析】(1)求出优秀的频率,计算出抽取的人员中优秀学生数后可得全体优秀学生数;(2)由频率和为1求得第一组、第二组频率,然后可补齐频率分布直方图;(3)在频率分布直方图中计算出频率对应的值即为中位数,用各组数据中点值乘以频率后相加得均值【详解】(1)由频率分布直方图,分数在120分以上的频率为,因此优秀学生有(人);(2)设第一组频率为,则第二组频率为,所以,,第一组频率为,第二组频率为频率分布直方图如下:(3)前3组数据的频率和为,中位数在第四组,设中位数为,则,均值为19、(1);(2)(ⅰ);(ⅱ).【解析】(1)求出后可得椭圆的标准方程.(2)(ⅰ)设直线的方程为:,,联立直线方程和椭圆方程,利用韦达定理、弦长公式可求面积表达式,利用基本不等式可求面积的最大值.(ⅱ)利用韦达定理化简可得,从而可得的轨迹为圆,故可证存在定点,使得为定值.【详解】(1)由题意知:,,又,则以为圆心且过的圆的半径为,故,所以椭圆的标准方程为:.(2)(ⅰ)设直线的方程为:,将代入得:,所以且,故.又,点到直线的距离,所以,等号当仅当时取,即当时,的面积取最大值为.(ⅱ)显然直线的斜率一定存在,设直线的方程为:,,由(ⅰ)知:所以,所以,解得,,直线过定点或,所以D在以OZ为直径的圆上,该圆的圆心为或,半径等于,所以存在定点或,使得为定值.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.20、【解析】利用复合命题的真假推出两个命题为一真一假,求出m的范围即可.【详解】:方程有两个不等的负实数根,解得,:方程无实数根,解得,所以:,:或.因为为真命题,为假命题,所以真假,或假真.(1)当真假时,即真为真,所以,解得;(2)当假真时,即真为真,所以,解得.综上,取值范围为21、(1);(2)是定值,定值为4【解析】(1)根据正三角形性质与面积可求得即可求得方程;(2)当直线斜率不为0时,设其方程代入椭圆方程利用韦达定理求得两根关系式,进而求得的表达式,最后求比值即可;当直线斜率为0时直接求解即可【详解】(1)为正三角形,,可得,且,∴椭圆的方程为.(2)分以下两种情况讨论:①当直线斜率不为0时,设其方程为,且,联立,消去得,则,且,∴弦的中点的坐标为,则弦的垂直平分线为,令,得,,又,;②当直线斜率为0时,则,,则.综合①②得是定值且为4【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡下家人课件
- 税收补充习题
- 小儿先天性心脏病
- 《粉末冶金》课件
- 中学规划设计
- 几百几十数乘以一位数质量测验口算题
- 2024应急预案编制导则
- 血液制品的种类成分和作用全血成分血血制品
- 重庆2022-2023高二上期学情调研化学试题卷
- 新媒体创新与运用
- 2024年社区专职干部招聘考试全真模拟试卷及答案【共四套】
- 2024年公路标识安装合同
- (北师大版)2024-2025学年九年级数学上学期期中测试卷
- 01-专题一 信息类文本阅读
- 山东省济宁市-八年级(上)期中数学试卷-(含答案)
- 中小学-珍爱生命 远离毒品-课件
- 金融学期末试卷及答案
- 奢沟小学2024年春季学期法治副校长进校园开展安全、法制知识讲座实施方案
- 道法珍惜师生情谊教学课件 2024-2025学年统编版道德与法治七年级上册
- 2024新苏教版一年级数学册第三单元第1课《图形的初步认识》课件
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
评论
0/150
提交评论