版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04点圆模型题型解读|模型构建|通关试练动点轨迹问题是中考和各类模拟考试的重要和难点题型,综合考查学生解析几何知识和思维能力.该题型一般在填空题或解答题的其中一问出现,具有一定的难度,致使该考点成为学生在中考中失分的集中点.掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本专题就动点轨迹为圆弧型进行梳理及对应试题分析,方便掌握.模型01定义型点A为定点,点B为动点,且AB长度固定,则点B的轨迹是以点A为圆心,AB长为半径的圆.模型02直径所对的角为直角(直角模型)一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧;如图,若P为动点,AB为定值,∠APB=90°,则动点P是以AB为直径的圆或圆弧.模型03等弦对等角模型一条定边所对的角始终为定角,则定角顶点轨迹是圆弧.如图,若P为动点,AB为定值,∠APB为定值,则动点P的轨迹为圆弧.模型01定义型考|向|预|测点圆模型的定义型该题型主要以选择、填空形式出现,目前与综合性大题结合考试,作为其中一问,难度系数不大,在各类考试中都以中档题为主.解这类问题的关键是结合圆的定义判定动点变化的特点,结合圆和其它几何的相关知识点进行解题.答|题|技|巧第一步:根据题意判定动点的变化特性第二步:找准定点和定长(圆心和半径)第三步:结合圆、三角形、四边形的相关知识点进行解题,一般情况下会涉及最值问题例1.(2022·广西)如图,在△ABC中,,,,点D在AC边上,且,动点P在BC边上,将△PDC沿直线PD翻折,点C的对应点为E,则△AEB面积的最小值是(
)A. B. C.2 D.例2.(2022·北京)如图,在中,,,,点是边的中点,将绕点C逆时针方向旋转得到,点是边上的一动点,则长度的最大值与最小值的差为.模型02直角模型考|向|预|测点圆问题中的直角模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查对圆性质的的理解.实际题型中会结合直角三角形的相关知识点,对数形结合的讨论是解题的关键.许多实际问题的讨论中需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成求固定图形问题.答|题|技|巧第一步:观察图形特点,找准直角顶点和定长(圆的直径);第二步:利用圆与直角三角形的相关知识点进行解题;第三步:涉及最值问题的图形要考虑线段的转化,熟练掌握共线问题、将军饮马问题、垂线段问题等相关知识点;第四步:数形结合进行分析、解答例1.(2021·山东)如图,在正方形ABCD中,,E为边AB上一点,F为边BC上一点.连接DE和AF交于点G,连接BG.若,则BG的最小值为__________.例2.如图,在平面直角坐标系中,点的坐标为,点是第一象限内的一个动点并且使,点,则的最小值为.模型03等弦对等角考|向|预|测点圆问题中的等圆对等角模型主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度.该题型主要考查动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解.解题时会考查了矩形,圆,相似三角形的判定和性质,两点之间线段最短等知识,解题的关键是学会添加常用辅助线,构造对应图形解决问题,属于中考中的压轴题.答|题|技|巧第一步:观察图形特点,确定定弦和定角;第二步:根据题意准确分析出动点的运动轨迹,并构建适当图形(三角形居多);第三步:利用四边形、隐圆、直角三角形或相似的相关知识点解题;例1.(2022·江苏)如图,已知正方形的边长为2,若动点E满足,则线段长的最大值为.例2.(2023·重庆)如图,在边长为6的等边中,点,分别是边,上的动点,且,连接,交于点,连接,则的最小值为.1.(2023·广东)如图,四边形为矩形,,.点P是线段上一动点,点M为线段上一点.,则的最小值为(
)A. B. C. D.2.(2023·湖南)如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是(
)A.2 B.+1 C.2﹣2 D.33.(2023·山西)如图,△ABC中,∠C=90°,∠BAC=30°,AB=2,点P从C点出发,沿CB运动到点B停止,过点B作射线AP的垂线,垂足为Q,点Q运动的路径长为()A. B. C. D.4.(2023·广州)如图,等边三角形ABC和等边三角形ADE,点N,点M分别为BC,DE的中点,AB=6,AD=4,△ADE绕点A旋转过程中,MN的最大值为.5.(2023·云南)如图,在Rt△ABC中,,,BC=2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连接CE,则CE的最大值是.6.(2023·贵州)如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为.7.(2022•天津)如图,在矩形ABCD中,AB=6,BC=5,点E在BC上,且CE=4BE,点M为矩形内一动点,使得∠CME=45°,连接AM,则线段AM的最小值为.8.(2023·贵阳)如图,矩形中,,,点,分别是,边上的两个动点,且,点为的中点,点为边上一动点,连接、,则的最小值为.9.(2023·安徽)等腰直角中,,,点是平面内一点,,连接,将绕点逆时针旋转得到,连接,当填度数度时,可以取最大值,最大值等于.10.(2023·广西)如图①,在△ABC中,∠ACB=90°,点D,E分别是AB,BC边上的点,且AC=CD=3,连接AE,DE,∠CAE+∠AEB=180°.(1)当∠B=22.5°时,求证:CD平分∠ACB;(2)当CD=BD时,求的值;(3)如图②,若点F是线段AC上一点,且AF=1,连接DF,EF,EF交CD于点G,求△DEF面积的最大值.1.如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2 B. C.3 D.2.如图,正方形的边长是4,点是边上一动点,连接,过点作于点,点是边上另一动点,则的最小值为A.5 B. C.6 D.3.如图,在Rt和Rt中,,,AB=AE=5.连接BD,CE,将△绕点A旋转一周,在旋转的过程中当最大时,△ACE的面积为(
).A.6 B. C.9 D.4.如图,在Rt△ABC中,∠ACB=90°,BC=3,AB=5,点D是边BC上一动点,连接AD,在AD上取一点E,使∠DAC=∠DCE,连接BE,则BE的最小值为()A.2﹣3 B. C.﹣2 D.5.如图,点P是正六边形ABCDEF内一点,AB=4,当∠APB=90°时,连接PD,则线段PD的最小值是()A. B. C.6 D.6.如图,矩形ABCD的边AB=8,AD=6,M为BC的中点,P是矩形内部一动点,且满足∠ADP=∠PAB,N为边CD上的一个动点,连接PN,MN,则PN+MN的最小值为.7.如图,在等边△ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE交于点F,连接CF,则∠AFB=,CF的最小值是.8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点E是AC的中点,点F是斜边AB上任意一点,连接EF,将△AEF沿EF对折得到△DEF,连接DB,则△BDF周长的最小值是.9.如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.10.如图,线段为的直径,点在的延长线上,,,点是上一动点,连接,以为斜边在的上方作Rt,且使,连接,则长的最大值为.11.如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB=∠ACP,则点P运动的路径长为.12.如图,中,,,,是内部的一个动点,且满足,连接,则线段长的最小值为.13.(1)【学习心得】小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在中,,,是外一点,且,求的度数,若以点为圆心,为半径作辅助圆,则点、必在上,是的圆心角,而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《品牌个性的塑造》课件
- 员工岗前培训内容
- 项目风险应对四种策略社会工作专业教学案例宝典
- 言语治疗技术说评估CRRCAE法
- 《陶瓷储能电容器》课件
- 胸膜腔穿刺术
- 华为入职培训方案
- 投诉的沟通护患沟通护患关系护士培训
- 一浅群二深群颈阔肌胸锁乳突肌舌骨
- 《女性与婚恋、家庭》课件
- 国开2024年《法律基础》形考作业1-4答案
- 《剧院魅影:25周年纪念演出》完整中英文对照剧本
- 蒋诗萌小品《谁杀死了周日》台词完整版
- DBJ-T 15-98-2019 建筑施工承插型套扣式钢管脚手架安全技术规程
- 用英语写一个红色人物的故事
- 城市排水工程图纸审查要点
- 高三一轮复习生物5.1植物生长素课件
- 川教版四年级英语上册全册练习含答案
- 谷歌合作协议书
- 一例ANCA相关性血管炎患者的护理查房
- “变废为宝从我做起”科学调查体验活动方案【9篇】
评论
0/150
提交评论