版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市人民大学附属中学数学高一上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数向左平移个单位,再向上平移1个单位后与的图象重合,则A.为奇函数 B.的最大值为1C.的一个对称中心为 D.的一条对称轴为2.已知实数集为,集合,,则A. B.C. D.3.已知,则等于()A. B.C. D.4.设角的终边经过点,那么A. B.C. D.5.设函数的定义域,函数的定义域为,则=A. B.C. D.6.已知全集,则()A. B.C. D.7.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数8.已知幂函数的图象过点,则的值为()A. B.1C.2 D.49.已知函数的部分图象如图所示,下列说法错误的是()A.B.f(x)的图象关于直线对称C.f(x)在[-,-]上单调递减D.该图象向右平移个单位可得的图象10.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.能说明命题“如果函数与的对应关系和值域都相同,那么函数和是同一函数”为假命题的一组函数可以是________________,________________12.若函数的定义域为R,则实数m的取值范围是______13.函数的值域为_____________14.若函数在上单调递增,则的取值范围是__________15.已知,若,使得,若的最大值为,最小值为,则__________16.方程的解为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围18.已知圆,直线(1)直线l一定经过哪一点;(2)若直线l平分圆C,求k的值;(3)若直线l与圆C相交于A,B,求弦长的最小值及此时直线的方程19.已知函数是定义在上的偶函数,且当时,,函数在轴左侧的图象如图所示(1)求函数的解析式;(2)若关于的方程有个不相等的实数根,求实数的取值范围20.在四面体B-ACD中,是正三角形,是直角三角形,,.(1)证明:;(2)若E是BD的中点,求二面角的大小.21.设有一条光线从射出,并且经轴上一点反射.(1)求入射光线和反射光线所在的直线方程(分别记为);(2)设动直线,当点到的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用函数的图象变换规律得到的解析式,再利用正弦函数的图象,得出结论【详解】向左平移个单位,再向上平移1个单位后,可得的图象,在根据所得图象和的图象重合,故,显然,是非奇非偶函数,且它的最大值为2,故排除A、B;当时,,故不是对称点;当时,为最大值,故一条对称轴为,故D正确,故选D.【点睛】本题主要考查函数的图象变换规律,正弦函数的图象的对称性,属于基础题.利用y=sinx的对称中心为求解,令,求得x.2、C【解析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.3、A【解析】利用换元法设,则,然后利用三角函数的诱导公式进行化简求解即可【详解】设,则,则,则,故选:4、D【解析】由题意首先求得的值,然后利用诱导公式求解的值即可.【详解】由三角函数的定义可知:,则.本题选择D选项.【点睛】本题主要考查由点的坐标确定三角函数值的方法,诱导公式及其应用等知识,意在考查学生的转化能力和计算求解能力.5、B【解析】由题意知,,所以,故选B.点睛:集合是高考中必考知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错6、C【解析】根据补集的定义计算可得;【详解】解:因为,所以;故选:C7、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.8、C【解析】设出幂函数的解析式,利用给定点求出解析式即可计算作答.【详解】依题意,设,则有,解得,于得,所以.故选:C9、C【解析】先根据图像求出即可判断A,利用正弦函数的对称轴及单调性即可判断BC,通过平移变换即可判断D.【详解】根据函数的部分图象,可得所以,故A正确;利用五点法作图,可得,可得,所以,令x,求得,为最小值,故函数的图象关于直线对称,故B正确:当时,,函数f(x)没有单调性,故C错误;把f(x)的图象向右平移个单位可得的图象,故D正确故选:C.10、C【解析】先求出,再根据二倍角余弦公式求出,然后根据诱导公式求出.【详解】由题意可得:,且,所以,所以,故选:C【点睛】本题考查了二倍角的余弦公式和诱导公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.(答案不唯一);【解析】根据所学函数,取特例即可.【详解】根据所学过过的函数,可取,,函数的对应法则相同,值域都为,但函数定义域不同,是不同的函数,故命题为假.故答案为:;12、【解析】由题意得到时,恒成立,然后根据当和时,进行分类讨论即可求出结果.详解】依题意,当时,恒成立当时,,符合题意;当时,则,即解得,综上,实数m的取值范围是,故答案:13、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题14、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题15、【解析】作出函数的图像,计算函数的对称轴,设,数形结合判断得时,取最小值,时,取最大值,再代入解析式从而求解出另外两个值,从而得和,即可求解.【详解】作出函数的图像如图所示,令,则函数的对称轴为,由图可知函数关于,,对称,设,则当时,取最小值,此时,可得,故;当时,取最大值,此时,可得,故,所以.故答案为:【点睛】解答该题的关键是利用数形结合,利用三角函数的对称性与周期性判断何时取得最大值与最小值,再代入计算.16、【解析】令,则解得:或即,∴故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据即可求出实数a的值;(2)令,根据由求得的值,再根据正弦函数的性质分析的取值情况,结合题意即可得出答案.【小问1详解】解:,∴,∴;【小问2详解】解:令,则,由得,∵在[-,]上是增函数,在[,]上是减函数,且,∴时,x有两个值;或时,x有一个值,其它情况,x值不存在,∴时函数f(x)只有1个零点,时,,要f(x)有2个零点,有,∴时,,要f(x)有2个零点,有,综上,f(x)有两个零点时,a的取值范围是.18、(1)(2)(3)弦长的最小值为,此时直线的方程为【解析】(1)由可求出结果;(2)转化为圆心在直线上可求出结果;(3)当时,弦长最小,根据垂直关系求出直线斜率,根据点斜式求出直线的方程,利用勾股定理可求出最小弦长.【详解】(1)由得得,所以直线l一定经过点.(2)因为直线l平分圆C,所以圆心在直线上,所以,解得.(3)依题意可知当时,弦长最小,此时,所以,所以,即,圆心到直线的距离,所以.所以弦长的最小值为,此时直线的方程为.【点睛】关键点点睛:(3)中,将弦长最小转化为是解题关键.19、(1)(2)【解析】(1)利用可求时的解析式,当时,利用奇偶性可求得时的的解析式,由此可得结果;(2)作出图象,将问题转化为与有个交点,数形结合可得结果.【小问1详解】由图象知:,即,解得:,当时,;当时,,,为上的偶函数,当时,;综上所述:;【小问2详解】为偶函数,图象关于轴对称,可得图象如下图所示,有个不相等的实数根,等价于与有个不同的交点,由图象可知:,即实数的取值范围为.20、(1)证明见解析(2)【解析】(1)取AC的中点F,连接DF,BF,由等腰三角形的性质,先证平面BFD,再证;(2)连接FE,由(1)可得,,则即为二面角的平面角,进而求解即可【详解】(1)取AC的中点F,连接DF,BF,是正三角形,,又是直角三角形,且,,又,平面BFD,平面BFD,平面BFD,又平面BFD,.(2)连接FE,由(1)平面BFD,平面BFD,平面BFD,,,即为二面角的平面角,设,则,,,在中,,,即是直角三角形,∴,故为正三角形,∴,∴二面角的大小为.【点睛】本题考查线线垂直的证明,考查几何法求二面角,考查运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省杭甬运河杭州段项目某合同段工程施工组织设计
- 青年员工技能培训文档
- 员工素质教育培训方案
- 2024年二手房产共有权分割合同
- 八上家长会课件下载
- 监督执纪保密知识培训
- 销售外包的简单合同
- 活动执行工作总结
- 河南师范大学《写意基础》2021-2022学年第一学期期末试卷
- 2024年度钢筋工程质量保证与索赔合同3篇
- 《追求有效教学》课件
- 郑州大学《新能源概论》2022-2023学年第一学期期末试卷
- 专题04 整本书阅读(题型归纳、知识梳理)(考点串讲)-七年级语文上学期期末考点大串讲(统编版2024·五四学制)
- 《跨境电商直播(双语)》课件-4.1跨境直播脚本设计
- 教师职业病教育
- 2024年云南省公务员录用考试《行测》真题及答案解析
- 2024-2030年中国粉末冶金制造行业“十四五”发展动态与发展方向建议报告
- 2024-2030年中国小苏打行业发展前景预测及投资潜力分析报告
- 17 难忘的泼水节(第一课时)公开课一等奖创新教学设计
- 一年级数学20以内加减法口算混合练习题
- 矿山安全生产培训
评论
0/150
提交评论