版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市黄陂区汉口北高中2025届数学高二上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,若,则()A.42 B.45C.48 D.512.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.63.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.4.已知a,b为不相等实数,记,则M与N的大小关系为()A. B.C. D.不确定5.已知函数(且,)的一个极值点为2,则的最小值为()A. B.C. D.76.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切7.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.8.阅读如图所示程序框图,运行相应的程序,输出的S的值等于()A.2 B.6C.14 D.309.若正实数、满足,且不等式有解,则实数取值范围是()A.或 B.或C. D.10.运行如图所示程序后,输出的结果为()A.15 B.17C.19 D.2111.在数列中,,则等于A. B.C. D.12.已知向量分别是直线的方向向量,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某次实验得到如下7组数据,通过判断知道与具有线性相关性,其线性回归方程为,则______.(参考公式:)12345676.06.26.36.46.46.76.814.两姐妹同时推销某一商品,现抽取他们其中8天的销售量(单位:台),得到的茎叶图如图所示,已知妹妹的销售量的平均数为14,姐姐的销售量的中位数比妹妹的销售量的众数大2,则的值为______.15.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______16.在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的单调区间;(2)求函数在区间上的值域18.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.19.(12分)已知是数列的前n项和,且.(1)求数列的通项公式;(2)若,求的前n项和.20.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,E为BP的中点,,(1)证明:平面PAD;(2)求平面EAC与平面PAC夹角的余弦值21.(12分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求的长.22.(10分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】结合等差数列的性质求得正确答案.【详解】依题意是等差数列,,.故选:C2、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D3、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.4、A【解析】利用作差法即可比较M与N的大小﹒【详解】因为,又,所以,即故选:A5、B【解析】求出函数的导数,由给定极值点可得a与b的关系,再借助“1”的妙用求解即得.【详解】对求导得:,因函数的一个极值点为2,则,此时,,,因,即,因此,在2左右两侧邻近的区域值一正一负,2是函数的一个极值点,则有,又,,于是得,当且仅当,即时取“=”,所以的最小值为.故选:B6、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.7、C【解析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C8、C【解析】模拟运行程序,直到得出输出的S的值.【详解】运行程序框图,,,;,,;,,;,输出.故选:C9、A【解析】将代数式与相乘,展开后利用基本不等式可求得的最小值,可得出关于实数的不等式,解之即可.【详解】因为正实数、满足,则,即,所以,,当且仅当时,即当时,等号成立,即的最小值为,因为不等式有解,则,即,即,解得或.故选:A.II卷10、D【解析】根据给出的循环程序进行求解,直到满足,输出.【详解】,,,,,,,,,,,,所以.故选:D11、D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律12、C【解析】由题意,得,由此可求出答案【详解】解:∵,且分别是直线的方向向量,∴,∴,∴,故选:C【点睛】本题主要考查向量共线的坐标表示,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、9##【解析】求得样本中心点的坐标,代入回归直线,即可求得.详解】根据表格数据可得:故,解得.故答案为:.14、13【解析】先根据妹妹的销售量的平均数为14,求得y,进而得到其众数,然后再根据姐姐的销售量的中位数比妹妹的销售量的众数大2,得到姐姐的销售量的中位数.【详解】因为妹妹的销售量的平均数为14,所以,解得,由茎叶图知:妹妹的销售量的众数是14,因为姐姐的销售量的中位数比妹妹的销售量的众数大2,所以姐姐的销售量的中位数是16,所以,解得,所以,故答案为:1315、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.16、4【解析】结合勾股定理求得正确答案.【详解】如图,设村庄为A,开始台风中心的位置为B,台风路径为直线,因为点A到直线的距离为,∴村庄所在地受到台风影响的时间约为:(小时).故答案为:本卷包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答第22题~第23题为选考题,考生根据要求作答三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)根据函数的单调性求出函数的极值点,从而求出函数的最值即可【详解】解:(1)由题意得,,令,得,令,得或,故函数的单调递增区间为,单调递减区间为(2)易知,因为,所以(或由,可得),又当时,,所以函数在区间上的值域为【点睛】确定函数单调区间的步骤:第一步,确定函数的定义域;第二步,求;第三步,解不等式,解集在定义域内的部分为单调递增区间;解不等式,解集在定义域内的部分为单调递减区间18、(1);(2)证明见解析.【解析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【点睛】数列求和的常见方法:(1)倒序相加法:如果一个数列的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.19、(1)(2)【解析】(1)当时,化简得到,进而得到数列的通项公式;(2)由(1)得到,结合裂项法,即可求解.【小问1详解】解:由题意,数列的前n项和,且,当时,,当时,,满足上式,所以数列的通项公式为.【小问2详解】解:由,可得,所以.20、(1)证明见解析(2)【解析】(1)通过作辅助线,构造平行四边形,在平面PAD找到线并证明,根据线面平行的判定定理即可证明;(2)建立空间直角坐标系,求出相应点的坐标,进而求得相关的向量坐标,求出平面EAC与平面PAC的法向量,根据向量的夹角公式求得答案.【小问1详解】证明:取PA的中点F,由E为PB的中点,则,,而,,所以且,则四边形CDFE为平行四边形,所以,又平面PAD,平面PAD,所以平面PAD【小问2详解】∵平面ABCD,,∴AP,AB,AD两两垂直,以A为原点,,,向量方向分别为x轴,y轴,z轴建立如图所示空间直角坐标系,各点坐标如下:,,,,,设平面APC的法向量为,由,,有,取,则,,即,设平面EAC的法向量为,由,,有,取,则,,即,所以,由原图可知平面EAC与平面PAC夹角为锐角,所以平面EAC与平面PAC夹角的余弦值为21、(1);(2).【解析】(1)利用公式直接将椭圆的参数方程转化为普通方程即可.(2)首先求出直线的参数方程,代入椭圆的普通方程得到,再利用直线参数方程的几何意义求弦长即可.【详解】(1)因为曲线(为参数),所以曲线的普通方程为:.(2)由题知:直线的参数方程为(为参数),将直线的参数方程代入,得.,.所以.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考英语作文:暑假计划
- 2025年农业生产计划
- 2025幼儿园大班教师个人计划范文
- 学校新闻宣传工作计划如何做好
- 八年级期末复习计划
- 文学《小鹿的玫瑰花》课件
- 幼儿园中班教学计划021集锦
- 学校行政工作总结和计划-行政工作总结和计划
- 法制教育个人工作计划完整版
- 《气瓶标识及填充量》课件
- 2024年PMP项目管理师考试试卷及答案指导
- 2024-2030年中国集中供热行业供需平衡与投资运行模式规划研究报告
- TCSRME 034-2023 隧道岩溶堵水注浆技术规程
- 艺坊寻美-艺术实践体验坊智慧树知到答案2024年黑龙江幼儿师范高等专科学校
- 桂枝颗粒营销策略与品牌定位
- 墙布订购合同协议书
- AQ/T 1089-2020 煤矿加固煤岩体用高分子材料(正式版)
- 电影作品读解智慧树知到期末考试答案章节答案2024年西北大学
- 临床骨质疏松患者护理查房
- 新媒体与社会性别 知到智慧树网课答案
- 大班健康活动《不吃三无食品》
评论
0/150
提交评论