![北京市海淀区北京57中2025届数学高一上期末考试试题含解析_第1页](http://file4.renrendoc.com/view7/M00/13/3C/wKhkGWcIDPyATORoAAGkghbfW20570.jpg)
![北京市海淀区北京57中2025届数学高一上期末考试试题含解析_第2页](http://file4.renrendoc.com/view7/M00/13/3C/wKhkGWcIDPyATORoAAGkghbfW205702.jpg)
![北京市海淀区北京57中2025届数学高一上期末考试试题含解析_第3页](http://file4.renrendoc.com/view7/M00/13/3C/wKhkGWcIDPyATORoAAGkghbfW205703.jpg)
![北京市海淀区北京57中2025届数学高一上期末考试试题含解析_第4页](http://file4.renrendoc.com/view7/M00/13/3C/wKhkGWcIDPyATORoAAGkghbfW205704.jpg)
![北京市海淀区北京57中2025届数学高一上期末考试试题含解析_第5页](http://file4.renrendoc.com/view7/M00/13/3C/wKhkGWcIDPyATORoAAGkghbfW205705.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市海淀区北京57中2025届数学高一上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.2.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则A. B.C. D.3.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.84.若函数是偶函数,则的单调递增区间为()A. B.C. D.5.设集合,.则()A. B.C. D.6.已知,,,则大小关系为()A. B.C. D.7.下列四组函数中,表示同一函数的一组是()A. B.C. D.8.已知点.若点在函数的图象上,则使得的面积为2的点的个数为A.4 B.3C.2 D.19.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限10.不等式成立x的取值集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点,,在函数的图象上,如图,若,则______.12.若角的终边经过点,则___________13.在某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各个选项中,一定符合上述指标的是__________(填写序号)①平均数;②标准差;③平均数且极差小于或等于2;④平均数且标准差;⑤众数等于1且极差小于或等于414.若函数在单调递增,则实数的取值范围为________15.过点且在轴,轴上截距相等的直线的方程为___________.16.若直线:与直线:互相垂直,则实数的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在区间上,如果函数为增函数,而函数为减函数,则称函数为“弱增”函数.试证明:函数在区间上为“弱增”函数.18.某视频设备生产厂商计划引进一款新型器材用于产品生产,以提高整体效益.通过市场分析,每月需投入固定成本5000元,每月生产台该设备另需投入成本元,且,若每台设备售价1000元,且当月生产的视频设备该月内能全部售完.(1)求厂商由该设备所获的月利润关于月产量台的函数关系式;(利润=销售额-成本)(2)当月产量为多少台时,制造商由该设备所获得的月利润最大?并求出最大月利润.19.已知,,,为第二象限角,求和的值.20.如图,欲在山林一侧建矩形苗圃,苗圃左侧为林地,三面通道各宽,苗圃与通道之间由栅栏隔开(1)若苗圃面积,求栅栏总长的最小值;(2)若苗圃带通道占地总面积为,求苗圃面积的最大值21.(1)计算(2)已知角的终边过点,求角的三个三角函数值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B2、A【解析】由三角函数定义得tan再利用同角三角函数基本关系求解即可【详解】由三角函数定义得tan,即,得3cos解得或(舍去)故选A【点睛】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题3、B【解析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题4、B【解析】利用函数是偶函数,可得,解出.再利用二次函数的单调性即可得出单调区间【详解】解:函数是偶函数,,,化为,对于任意实数恒成立,,解得;,利用二次函数的单调性,可得其单调递增区间为故选:B【点睛】本题考查函数的奇偶性和对称性的应用,熟练掌握函数的奇偶性和二次函数的单调性是解题的关键.5、A【解析】先求得,然后求得.【详解】.故选:A6、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.7、A【解析】判断两函数定义域与函数关系式是否一致即可;【详解】解:.和的定义域都是,对应关系也相同,是同一函数;的定义域为,的定义域为,,定义域不同,不是同一函数;的定义域为,的定义域为,定义域不同,不是同一函数;的定义域为,的定义域为或,定义域不同,不是同一函数故选:8、A【解析】直线方程为即.设点,点到直线的距离为,因为,由面积为可得即,解得或或.所以点的个数有4个.故A正确考点:1直线方程;2点到线的距离9、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.10、B【解析】先求出时,不等式的解集,然后根据周期性即可得答案.【详解】解:不等式,当时,由可得,又最小正周期为,所以不等式成立的x的取值集合为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【点睛】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.12、【解析】根据定义求得,再由诱导公式可求解.【详解】角的终边经过点,则,所以.故答案为:.13、③⑤【解析】按照平均数、极差、方差依次分析各序号即可.【详解】连续7天新增病例数:0,0,0,0,2,6,6,平均数是2<3,①错;连续7天新增病例数:6,6,6,6,6,6,6,标准差是0<2,②错;平均数且极差小于或等于2,单日最多增加4人,若有一日增加5人,其他天最少增加3人,不满足平均数,所以单日最多增加4人,③对;连续7天新增病例数:0,3,3,3,3,3,6,平均数是3且标准差小于2,④错;众数等于1且极差小于或等于4,最大数不会超过5,⑤对.故答案为:③⑤.14、【解析】根据复合函数单调性性质将问题转化二次函数单调性问题,注意真数大于0.【详解】令,则,因为为减函数,所以在上单调递增等价于在上单调递减,且,即,解得.故答案为:15、或【解析】当直线不过原点时设截距式方程;当直线过原点时设,分别将点代入即可【详解】由题,当直线不过原点时设,则,所以,则直线方程为,即;当直线过原点时设,则,所以,则直线方程为,即,故答案为:或【点睛】本题考查求直线方程,考查截距式方程的应用,截距相同的直线问题,需注意过原点的情况16、-2【解析】由于两条直线垂直,故.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】根据定义,只要证明函数在是单调减函数即可,这可以通过单调减函数的定义去证明.证明:设任意,且,由于,所以在区间上,为增函数.令,则有:.由于,则且,故.故在区间上,函数为减函数.由“弱增”函数的定义可知,函数在区间上为“弱增”函数.18、(1)(2)当时,获得增加的利润最大,且增加的最大利润为4000元【解析】(1)分和时两种情况,利用利润=销售额-成本列式即可;(2)利用二次函数求时的最大值,利用基本不等式求时的最大值,取最大即可.【小问1详解】当时,;当时,【小问2详解】当时,,当时,当时,,当且仅当,即时,当时,获得增加的利润最大,且增加的最大利润为4000元19、,【解析】由已知可求得,,根据和的余弦公式可求得,再利用二倍角公式即可求出.详解】,,,,为第二象限角,则,解得,,,.20、(1)200米(2)4608平方米【解析】(1)设苗圃的两边长分别为a,b,依题意列出已知和所求,由基本不等式直接可得;(2)根据题意列出已知,利用基本不等式将条件化为不等式,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业劳动用工合同模板
- 管理咨询顾问课程课件
- 投资合作开发框架合同
- 2024-2025学年新教材高中语文 第七单元 14.2 荷塘月色说课稿 部编版必修上册
- 《风湿病与疼痛》课件
- 企业内部培训委托合同范本
- 绿色建筑能源管理系统设计合同
- 2024-2025学年高中语文 第三单元 人生如舞台 10 哈姆莱特(选场)说课稿 语文版必修4
- 度标准合同:工程材料采购合同
- 正式版民间贷款合同样本
- 健身房众筹方案
- 护理带教汇报课件
- 基于学生主体的整本书阅读-《钢铁是怎样炼成的》(一等奖创新教学设计)
- 苏教版五年级数学下册100道口算题大全(全册)
- (完整word版)高中英语3500词汇表
- 社会政策概论课件
- 隐蔽工程验收记录(综合布线)
- 工程量清单及招标控制价编制服务采购实施方案(技术标)
- 全国住户收支调查业务知识考试复习题库(含答案)
- 复方氨基酸注射液的汇总
- 2023年上海市秋考语文真题试卷含答案(整理版)
评论
0/150
提交评论