辽宁省沈阳市2025届数学高二上期末教学质量检测试题含解析_第1页
辽宁省沈阳市2025届数学高二上期末教学质量检测试题含解析_第2页
辽宁省沈阳市2025届数学高二上期末教学质量检测试题含解析_第3页
辽宁省沈阳市2025届数学高二上期末教学质量检测试题含解析_第4页
辽宁省沈阳市2025届数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省沈阳市2025届数学高二上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.1172.双曲线的焦点到渐近线的距离为()A. B.2C. D.3.若函数在上为增函数,则a的取值范围为()A. B.C. D.4.直线被圆截得的弦长为()A.1 B.C.2 D.35.已知等差数列{an}的前n项和为Sn,且S7=28,则a4=()A.4 B.7C.8 D.146.圆与直线的位置关系是()A.相交 B.相切C.相离 D.不能确定7.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)8.在数列中,,,则()A. B.C. D.9.某人忘了电脑屏保密码的后两位,但记得最后一位是1,3,5,7,9中的一个数字,倒数第二位是G,O,D中的一个字母,若他尝试输入密码,则一次输入就解开屏保的概率是()A. B.C. D.10.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,且则的实轴长为A.1 B.2C.4 D.811.已知,,,执行如图所示的程序框图,输出值为()A. B.C. D.12.椭圆以坐标轴为对称轴,经过点,且长轴长是短轴长的倍,则椭圆的标准方程为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.如图的形状出现在南宋数学家杨辉所著的《算法九章·商功》中,后人称之为“三角垛”.已知某“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球……设各层(从上往下)球数构成一个数列,则___________,___________.14.已知数列满足,,则_________.15.如图,某河流上有一座抛物线形的拱桥,已知桥的跨度米,高度米(即桥拱顶到基座所在的直线的距离).由于河流上游降雨,导致河水从桥的基座处开始上涨了1米,则此时桥洞中水面的宽度为______米16.若圆柱的高、底面半径均为1,则其表面积为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式及前项的和.18.(12分)已知是公比不为1的等比数列,,且为的等差中项.(1)求的公比;(2)求的通项公式及前n项和.19.(12分)已知,,其中.(1)求的值;(2)设(其中、为正整数),求的值.20.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值21.(12分)已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线在y轴上的截距为m,交椭圆于A,B两个不同点.(Ⅰ)求椭圆的方程;(Ⅱ)求m的取值范围;(Ⅲ)求证直线MA,MB与x轴始终围成一个等腰三角形.22.(10分)已知数列是递增的等比数列,满足,(1)求数列的通项公式;(2)若,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【详解】因为等差数列中,,则.故选:B.2、A【解析】根据点到直线距离公式进行求解即可.【详解】由双曲线的标准方程可知:,该双曲线的焦点坐标为:,双曲线的渐近线方程为:,所以焦点到渐近线的距离为:,故选:A3、C【解析】求出函数的导数,要使函数在上为增函数,要保证导数在该区间上恒正即可,由此得到不等式,解得答案.详解】由题意可知,若在递增,则在恒成立,即有,则,故选:C.4、C【解析】利用直线和圆相交所得的弦长公式直接计算即可.【详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.5、A【解析】由等差数列的性质可知,再代入等差数列的前项和公式求解.【详解】数列{an}是等差数列,,那么,所以.故选:A.【点睛】本题考查等差数列的性质和前项和,属于基础题型.6、B【解析】用圆心到直线的距离与半径的大小判断【详解】解:圆的圆心到直线的距离,等于圆的半径,所以圆与直线相切,故选:B7、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B8、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.9、C【解析】应用分步计数法求后两位的可能组合数,即可求一次输入就解开屏保的概率.【详解】由题设,后两位可能情况有,∴一次输入就解开屏保的概率是.故选:C.10、B【解析】设等轴双曲线的方程为抛物线,抛物线准线方程为设等轴双曲线与抛物线的准线的两个交点,,则,将,代入,得等轴双曲线的方程为的实轴长为故选11、A【解析】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,计算三个数判断作答.【详解】模拟程序运行可得程序框图的功能是计算并输出三个数中的最小数,因,,,则,不成立,则,不成立,则,所以应输出的x值为.故选:A12、C【解析】分情况讨论焦点所在位置及椭圆方程.【详解】当椭圆的焦点在轴上时,由题意过点,故,,椭圆方程为,当椭圆焦点在轴上时,,,椭圆方程为,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】根据,,得到,利用累加法和等差数列求和公式求出,再利用裂项抵消法进行求和.【详解】因为,,,,,以上个式子累加,得,则;因为,所以.故答案为:,.14、【解析】由已知可知即数列是首项为1,公差为1的等差数列,进而可求得数列的通项公式,即可求.【详解】由题意知:,即,而,∴数列是首项为1,公差为1的等差数列,有,∴,则.故答案为:【点睛】关键点点睛:由递推关系求数列的通项,进而得到的通项公式写出项.15、【解析】以桥的顶点为坐标原点,水平方向所在直线为x轴建立直角坐标系,则根据点在抛物线上,可得抛物线的方程,设水面与桥的交点坐标为,求出,进而可得水面的宽度.【详解】以桥的顶点为坐标原点,水平方向所在直线为x轴建立直角坐标系,则抛物线的方程为,因为点在抛物线上,所以,即故抛物线的方程为,设河水上涨1米后,水面与桥的交点坐标为,则,得,所以此时桥洞中水面的宽度为米故答案为:16、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2),.【解析】(1)证明出,即可证得结论成立;(2)由(1)的结论并确定数列的首项和公比,可求得数列的通项公式,再利用分组求和法可求得.【小问1详解】证明:因为数列满足,,则,且,则,,,以此类推可知,对任意的,,所以,,故数列为等比数列.【小问2详解】解:由(1)可知,数列是首项为,公比为的等比数列,则,所以,,因此,.18、(1)(2),【解析】(1)设数列公比为,根据列出方程,即可求解;(2):由(1)得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设数列公比为,因为为的等差中项,可得,即,即,解得或(舍去),所以等比数列的公比为.【小问2详解】解:由(1)知且,可得,所以.19、(1);(2).【解析】(1),,写出的展开式通项,由可得出关于的方程,解出的值,再利用赋值法可求得所求代数式的值;(2)写出的展开式,求出、的值,即可求得的值.【小问1详解】解:设,,的展开式通项为,所以,,即,,解得,所以,.【小问2详解】解:,,,因此,20、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.21、(Ⅰ);(Ⅱ)且;(Ⅲ)证明见解析.【解析】(Ⅰ)设出椭圆方程,根据题意得出关于的方程组,从而求得椭圆的方程;(Ⅱ)根据题意设出直线方程,并与椭圆方程联立消元,根据直线与椭圆方程有两个不同交点,利用即可求出m取值范围;(Ⅲ)设直线MA,MB的斜率分别为k1,k2,根据题意把所证问题转化为证明k1+k2=0即可.【详解】(1)设椭圆方程为,由题意可得,解得,∴椭圆方程为;(Ⅱ)∵直线l平行于OM,且在y轴上的截距为m,,所以设直线的方程为,由消元,得∵直线l与椭圆交于A,B两个不同点,所以,解得,所以m的取值范围为.(Ⅲ)设直线MA,M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论