江西省南城县二中2025届高二数学第一学期期末达标检测模拟试题含解析_第1页
江西省南城县二中2025届高二数学第一学期期末达标检测模拟试题含解析_第2页
江西省南城县二中2025届高二数学第一学期期末达标检测模拟试题含解析_第3页
江西省南城县二中2025届高二数学第一学期期末达标检测模拟试题含解析_第4页
江西省南城县二中2025届高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省南城县二中2025届高二数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知i是虚数单位,复数z=,则复数z的虚部为()A.i B.-iC.1 D.-12.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是A. B.C. D.3.定义在R上的函数与函数在上具有相同的单调性,则k的取值范围是()A. B.C. D.4.设等差数列前项和为,若是方程的两根,则()A.32 B.30C.28 D.265.已知函数,若对任意两个不等的正数,,都有恒成立,则a的取值范围为()A. B.C. D.6.点,是椭圆的左焦点,是椭圆上任意一点,则的取值范围是()A. B.C. D.7.函数的部分图像为()A. B.C. D.8.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形9.抛物线的准线方程是,则实数的值为()A. B.C.8 D.10.在四棱锥中,底面为平行四边形,为边的中点,为边上的一列点,连接,交于,且,其中数列的首项,则()A. B.为等比数列C. D.11.已知空间向量,,,则()A.4 B.-4C.0 D.212.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足(),设数列满足:,数列的前项和为,若()恒成立,则的取值范围是________14.已知,,若,则______15.在等比数列中,若,,则数列的公比为___________.16.已知在△中,角A,B,C的对边分别是a,b,c,若△的面积为2,边上中线的长为.且,则△外接圆的面积为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.18.(12分)已知数列的前n项和(1)求的通项公式;(2)若数列的前n项和,求数列的前n项和19.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.20.(12分)已知三棱柱中,面底面,,底面是边长为的等边三角形,,、分别在棱、上,且.(1)求证:底面;(2)在棱上找一点,使得和面所成角的余弦值为,并说明理由.21.(12分)在中,角,,所对的边分别为,,,其外接圆半径为,已知(1)求角;(2)若边的长是该边上高的倍,求22.(10分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先通过复数的除法运算求出z,进而求出虚部.【详解】由题意,,则z的虚部为1.故选:C.2、C【解析】直线l:y=-x+a与渐近线l1:bx-ay=0交于B,l与渐近线l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考点:直线与圆锥曲线的综合问题;双曲线的简单性质3、B【解析】判定函数单调性,再利用导数结合函数在的单调性列式计算作答.【详解】由函数得:,当且仅当时取“=”,则在R上单调递减,于是得函数在上单调递减,即,,即,而在上单调递减,当时,,则,所以k的取值范围是.故选:B4、A【解析】根据给定条件利用韦达定理结合等差数列性质计算作答.【详解】因是方程的两根,则又是等差数列的前项和,于是得,所以.故选:A5、A【解析】将已知条件转化为时恒成立,利用参数分离的方法求出a的取值范围【详解】对任意都有恒成立,则时,,当时恒成立,

,当时恒成立,,故选:A6、A【解析】由,当三点共线时,取得最值【详解】设是椭圆的右焦点,则又因为,,所以,则故选:A7、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D8、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.9、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.10、A【解析】由得,为边的中点得,设,所以,根据向量相等可判断A选项;由得是公比为的等比数列,可判断B选项;代入可判断C选项;当时可判断D选项.【详解】由得,因为为边的中点,所以,所以设,所以,所以,当时,A选项正确;,由得,是公比为的等比数列,所以,所以,所以,不是常数,故B选项错误;所以,由得,故C选项错误;当时,,所以,此时为的中点,与重合,即,,故D错误.故选:A.11、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.12、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由条件求出的通项公式,得到,由裂项相消法再求出,根据不等式恒成立求出参数的范围即可.【详解】当时,有当时,由①有②由①-②得:所以,当时也成立.所以,故则由,即,所以所以,由所以故答案为:【点睛】本题考查求数列的通项公式,考查裂项相消法求和以及数列不等式问题,属于中档题.14、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:15、##【解析】求出等比数列的公比,利用定义可求得数列的公比.【详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.16、或【解析】由已知,结合正弦定理边角关系及三角形内角的性质可得,再根据三角形面积公式、余弦定理列方程求边长b、c,应用余弦定理求边长a,根据正弦定理求外接圆半径,再用圆的面积公式求面积.【详解】由题设及正弦定理边角关系有,又,∴,∴,∴.又,∴,即又据题意,得,且,∴或,故或,∴△外接圆的半径或,∴△外接圆的面积为或故答案为:或三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平面.方法二,利用几何法,通过平面证得,结合证得,由此证得平面.(2)通过平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【详解】如图,以为原点建立空间直角坐标系,可得,,,.(1)证明法一:因为,,,所以,,所以,,,平面,平面,所以平面.证明法二:因为平面,平面,所以,又因为,即,,平面,平面,所以平面.(2)由(1)知平面的一个法向量,设平面的法向量,又,,且所以所以平面的一个法向量为,所以,所以平面与平面所成锐二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18、(1),;(2),.【解析】(1)根据的关系可得,根据等比数列的定义写出的通项公式,进而可得的通项公式;(2)利用的关系求的通项公式,结合(1)结论可得,再应用分组求和、错位相消法求的前n项和【小问1详解】.①当时,,可得当时,.②①-②得,则,而a1-1=1不为零,故是首项为1,公比为2的等比数列,则∴数列的通项公式为,【小问2详解】∵,∴当时,,当时,,又也适合上式,∴,∴,令,,则,又,∴19、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或20、(1)证明见解析;(2)为的中点,理由见解析.【解析】(1)取的中点,连接,利用面面垂直的性质定理可得出平面,可得出,再由,结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,设点,利用空间向量法可得出关于实数的方程,求出的值,即可得出结论.【详解】(1)取的中点,连接,如图:因为三角形是等边三角形,所以,又因为面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、,在上找一点,其中,,,,设面的一个法向量,则,不妨令,则,和面所成角的余弦值为,则,解得或(舍),所以,为的中点,符合题意.21、(1);(2)【解析】(1)利用正弦定理将角化边,再利用余弦定理计算可得;(2)记边上的高为,不妨设,即可求出,再利用余弦定理求出,在中,记,根据锐角三角函数求出,,最后根据,利用两角和的余弦公式计算可得;【详解】解:(1)由已知条件,所以,所以所以,,由余弦定理可得,而,于是(2)记边上的高为,不妨设,则,,,所以,由余弦定理得,在中,记,则,,所以22、答案不唯一,具体见解析【解析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论