版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省文山州砚山县第二高级中学高一上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1﹣x2|的最小值是()A.4π B.2πC.π D.2.在长方体中,,则异面直线与所成角的大小是A. B.C. D.3.已知集合,则()A. B.C. D.4.设a是方程的解,则a在下列哪个区间内()A.(0,1) B.(3,4)C.(2,3) D.(1,2)5.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个6.在直角坐标系中,已知,那么角的终边与单位圆坐标为()A. B.C. D.7.已知函数f(x)=3x A. B.C. D.8.设平面向量,则A. B.C. D.9.设和两个集合,定义集合,且,如果,,那么A. B.C. D.10.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数若关于x的方程有4个解,分别为,,,,其中,则______,的取值范围是______12.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确命题的个数是________13.已知,,则___________(用a、b表示).14.已知函数f(x)=x2,若存在t∈R,对任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,则m的最大值为______15.在△ABC中,,面积为12,则=______16.在半径为5的圆中,的圆心角所对的扇形的面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,函数,且的图像过点.(1)求的值;(2)将的图像向左平移个单位后得到函数的图像,若图像上各点最高点到点的距离的最小值为1,求的单调递增区间.18.已知函数对任意实数x,y满足,,当时,判断在R上的单调性,并证明你的结论是否存在实数a使f
成立?若存在求出实数a;若不存在,则说明理由19.已知函数,且求函数的定义域;求满足的实数x的取值范围20.已知函数(,且)是指数函数.(1)求k,b的值;(2)求解不等式.21.已知点,圆(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】首先得出f(x1)是最小值,f(x2)是最大值,可得|x1﹣x2|的最小值为函数的半个周期,根据周期公式可得答案【详解】函数,∵对任意x∈R都有f(x1)≤f(x)≤f(x2),∴f(x1)是最小值,f(x2)是最大值;∴|x1﹣x2|的最小值为函数的半个周期,∵T=2π,∴|x1﹣x2|的最小值为π,故选:C.2、C【解析】连接为异面直线与所成角,几何体是长方体,是,,异面直线与所成角的大小是,故选C.3、C【解析】根据并集的定义计算【详解】由题意故选:C4、C【解析】设,再分析得到即得解.【详解】由题得设,由零点定理得a∈(2,3).故答案为C【点睛】本题主要考查函数的零点和零点定理,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.6、A【解析】利用任意角的三角函数的定义求解即可【详解】因为,所以角的终边与单位圆坐标为,故选:A7、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B8、A【解析】∵∴故选A;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;9、D【解析】根据的定义,可求出,,然后即可求出【详解】解:,;∴.故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题10、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、①.1②.【解析】作出图象,将方程有4个解,转化为图象与图象有4个交点,根据二次函数的对称性,对数函数的性质,可得的、的范围与关系,结合图象,可得m的范围,综合分析,即可得答案.【详解】作出图象,由方程有4个解,可得图象与图象有4个交点,且,如图所示:由图象可知:且因为,所以,由,可得,因为,所以所以,整理得;当时,令,可得,由韦达定理可得所以,因为且,所以或,则或,所以故答案为:1,【点睛】解题的关键是将函数求解问题,转化为图象与图象求交点问题,再结合二次函数,对数函数的性质求解即可,考查数形结合,分析理解,计算化简的能力,属中档题.12、3【解析】如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案为:3.13、##【解析】根据对数的运算性质可得,再由指对数关系有,,即可得答案.【详解】由,又,,∴,,故.故答案为:.14、5【解析】设g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.从而得到g(1)≤0且g(m)≤0,求得t的范围,讨论t的最值,代入m的不等式求得m的范围,结合条件可得m的最大值【详解】函数f(x)=x2,那么f(x+t)=x2+2tx+t2,对任意实数x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,从而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0当时,;当时,综上可得,由m为正整数,可得m的最大值为5故答案为5【点睛】本题考查不等式恒成立问题解法,注意运用二次函数的性质,考查运算求解能力,是中档题15、【解析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C【详解】由题意,在中,,,面积为12,则,解得∴故答案为【点睛】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题16、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用两个向量的数量积公式,两角和的正弦公式化简函数的解析式,再把点代入,求得的值(2)根据函数的图象变换规律求得的解析式,再利用正弦函数的单调性,求得的单调递增区间【详解】(1)已知,过点解得:;(2)左移后得到设的图象上符合题意的最高点为,解得,解得,,,的单调增区间为.【点睛】本题主要考查了三角函数与向量的简单运算知识点,以及函数的图象变换,属于中档题.18、(1)在上单调递增,证明见解析;(2)存在,.【解析】(1)令,则,根据已知中函数对任意实数满足,当时,易证得,由增函数的定义,即可得到在上单调递增;(2)由已知中函数对任意实数满足,,利用“凑”的思想,我们可得,结合(1)中函数在上单调递增,我们可将转化为一个关于的一元二次不等式,解不等式即可得到实数的取值范围试题解析:(1)设,∴,又,∴即,∴在上单调递增(2)令,则,∴∴,∴,即,又在上单调递增,∴,即,解得,故存在这样的实数,即考点:1.抽象函数及其应用;2.函数单调性的判断与证明;3.解不等式.【方法点睛】本题主要考查的是抽象函数及其应用,函数单调性的判断与证明,属于中档题,此类题目解题的核心思想就是对抽象函数进行变形处理,然后利用定义变形求出的大小关系,进而得到函数的单调性,对于解不等式,需要经常用到的利用“凑”的思想,对已知的函数值进行转化,求出常数所对的函数值,从而利用前面证明的函数的单调性进行转化为关于的一元二次不等式,因此正确对抽象函数关系的变形以及利用“凑”的思想,对已知的函数值进行转化是解决此类问题的关键.19、(1);(2)见解析.【解析】由题意可得,,解不等式可求;由已知可得,结合a的范围,进行分类讨论求解x的范围【详解】(1)由题意可得,,解可得,,函数的定义域为,由,可得,时,,解可得,,时,,解可得,【点睛】本题主要考查了对数函数的定义域及利用对数函数单调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题20、(1),(2)答案见解析【解析】(1)根据指数函数的定义列出方程,即可得解;(2)分和两种情况讨论,结合指数函数的单调性即可得解.【小问1详解】解:因为(,且)是指数函数,所以,,所以,;【小问2详解】解:由(1)得(,且),①当时,在R上单调递增,则由,可得,解得;②当时,在R上单调递减,则由,可得,解得,综上可知,当时,原不等式的解集为;当时,原不等式的解集为.21、(1)或.(2)【解析】(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业文化展示系统项目投资申请报告代可行性研究报告
- 2024年矿业测量仪器项目资金申请报告代可行性研究报告
- 新冠肺炎的护理查房
- 盆景项目可行性研究报告
- 年产xx家居节能项目可行性研究报告(项目说明)
- 高三一轮复习课件 自然地理之地质灾害
- 5.1植被课件高中地理人教版(2019)必修一
- 大班下学期语言教案:月亮姑娘做衣裳
- 舌系带护理诊断及措施
- 纪律教育活动启动会
- 新版RoHS环保知识培训教学内容
- 2025届炎德英才大联考物理高二上期末学业水平测试试题含解析
- 2024年执业药师资格继续教育定期考试题库附含答案
- 蚯蚓与土壤肥力提升2024年课件
- 店铺管理运营协议合同范本
- 天津市和平区2024-2025学年高一上学期11月期中英语试题(含答案含听力原文无音频)
- 2024年全国烟花爆竹储存作业安全考试题库(含答案)
- 2024年高中化学教师资格考试面试试题与参考答案
- DB11-T 2315-2024消防安全标识及管理规范
- 全科医生转岗培训结业考核模拟考试试题
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
评论
0/150
提交评论