淮安市重点中学2025届高一上数学期末学业水平测试试题含解析_第1页
淮安市重点中学2025届高一上数学期末学业水平测试试题含解析_第2页
淮安市重点中学2025届高一上数学期末学业水平测试试题含解析_第3页
淮安市重点中学2025届高一上数学期末学业水平测试试题含解析_第4页
淮安市重点中学2025届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

淮安市重点中学2025届高一上数学期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.已知点M在曲线上,点N在曲线:上,则|MN|的最小值为()A.1 B.2C.3 D.43.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.4.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.25.设a是方程的解,则a在下列哪个区间内()A.(0,1) B.(3,4)C.(2,3) D.(1,2)6.设常数使方程在区间上恰有三个解且,则实数的值为()A. B.C. D.7.函数,值域是()A. B.C. D.8.已知幂函数在上单调递减,则()A. B.5C. D.19.命题“”的否定是()A. B.C. D.10.已知,,则下列说法正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.全集,集合,则______12.已知,函数,若函数有两个零点,则实数k的取值范围是________13.若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.14.计算_________.15.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.16.已知幂函数的图象过点,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(1)若关于的不等式对任意恒成立,求实数的取值范围;(2)若关于的方程有两个不同实数根,求的取值范围.18.已知函数且为自然对数的底数).(1)判断函数的奇偶性并证明(2)证明函数在是增函数(3)若不等式对一切恒成立,求满足条件的实数的取值范围19.如图,在正方体中,为棱、的三等分点(靠近A点).求证:(1)平面;(2)求证:平面平面.20.已知函数.(1)求的值;(2)设,求的值.21.在①函数的图象向右平移个单位长度得到的图像,图像关于对称;②函数这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数的图象相邻两条对称轴之间的距离为.(1)若在上的值域为,求a的取值范围;(2)求函数在上的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【点睛】本题主要考查了充分不必要条件的判断,属于中档题.2、B【解析】根据圆的一般方程得出圆的标准方程,并且得圆的圆心和半径,计算两圆圆心的距离后就可以求解.【详解】由题意知:圆:,的坐标是,半径是,圆:,的坐标是,半径是.所以,因此两圆相离,所以最小值为.故选:B3、D【解析】,又,故选D考点:扇形弧长公式4、D【解析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【点睛】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题5、C【解析】设,再分析得到即得解.【详解】由题得设,由零点定理得a∈(2,3).故答案为C【点睛】本题主要考查函数的零点和零点定理,意在考查学生对这些知识的掌握水平和分析推理能力.6、B【解析】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,结合图象可得则﹣1<m<0,故排除C,D,再分别令m=﹣,m=﹣,求出x1,x2,x3,验证x22=x1•x3是否成立;【详解】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,方程cosx=m在区间(,3π)上恰有三个解x1,x2,x3(x1<x2<x3),则﹣1<m<0,故排除C,D,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2≠x1•x3=π2,故A错误,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2=x1•x3=π2,故B正确,故选B【点睛】本题考查了三角函数的图象和性质,考查了数形结合的思想和函数与方程的思想,属于中档题.7、A【解析】令,求出g(t)的值域,再根据指数函数单调性求f(x)值域.【详解】令,则,则,故选:A.8、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.9、D【解析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,按照改量词否结论的法则,所以否定为:,故选:D10、B【解析】利用对数函数以及指数函数的性质判断即可.【详解】∵,∴,∵,∴,∵,∴,则故选:.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用补集的定义求解【详解】因为全集,集合,所以,故答案为:12、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想13、【解析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【详解】解:因,将的图像向左平移个单位,得到,又关于轴对称,所以,,所以,所以当时取最小值;故答案为:14、1【解析】,故答案为115、##【解析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:16、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用函数的单调性去掉法则转化成不等式组恒成立,再借助均值不等式计算作答.(2)求出方程的二根,再结合对数函数的意义讨论即可计算作答.【小问1详解】依题意,,,,,而恒有,于是得,,,而,当且仅当,即时取“=”,于得,因此有,所以实数取值范围是.【小问2详解】依题意,,由,因此,,,解得,,因原方程有两个不同实数根,则,解得且,所以的取值范围是.【点睛】结论点睛:对于恒成立问题,函数的定义域为D,(1)成立⇔;(2)成立⇔.18、(1)见解析;(2)见解析;(3).【解析】(1)定义域为,关于原点对称,又,为奇函数(2)任取,,且,则===,又在上为增函数且,,,,在上是增函数(3)由(1)知在上为奇函数且单调递增,由得由题意得,即恒成立,又.综上得的取值范围是点睛:本题是一道关于符合函数的题目,总体方法是掌握函数奇偶性和单调性的知识,属于中档题.在证明函数单调性时可以运用定义法证明,在解答函数中的不等式时,要依据函数的单调性,比较两数大小,含有参量时要分离参量计算最值19、(1)见解析;(2)见解析.【解析】(1)欲证:平面,根据直线与平面平行的判定定理可知,只需证与平面内一条直线平行,连接,可知,则,又平面,平面,满足定理所需条件;(2)欲证:平面平面,根据面面垂直的判定定理可知,在平面内一条直线与平面垂直,而平面,平面,则,,满足线面垂直的判定定理则平面,而平面,满足定理所需条件【详解】(1)证明:连接,在正方体中,对角线,又因为、为棱、的三等分点,所以,则,又平面,平面,所以平面(2)因为在正方体中,因为平面,而平面,所以,又因为在正方形中,,而,平面,平面,所以平面,又因为平面,所以平面平面【点睛】本题主要考查线面平行的判定定理和线面垂直的判定定理,以及考查对基础知识的综合应用能力和基本定理的掌握能力20、(1);(2)【解析】(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值试题解析:解:(1)(2)考点:三角函数求值21、(1);(2),,.【解析】先选条件①或条件②,结合函数的性质及图像变换,求得函数,(1)由,得到,根据由正弦函数图像,即可求解;(2)根据函数正弦函数的形式,求得,,进而得出函数的单调递增区间.【详解】方案一:选条件①由函数的图象相邻两条对称轴之间的距离为,可得,解得,所以,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.(1)由,可得,因为函数在上的值域为,根据由正弦函数图像,可得,解得,所以的取值范围为.(2)由,,可得,,当时,可得;当时,可得;当时,可得,所以函数在上的单调递增区间为,,.方案二:选条件②:由,因为函数的图象相邻两条对称轴之间的距离为,可得,所以,可得,又由函数的图象向右平移个单位长度得到,又函数图象关于对称,可得,,因为,所以,所以.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论