版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市山东师范大学附中2025届高一上数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若动点.分别在直线和上移动,则线段的中点到原点的距离的最小值为()A. B.C. D.2.方程的所有实数根组成的集合为()A. B.C. D.3.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.B.C.D.4.圆与圆的位置关系是()A.外切 B.内切C.相交 D.外离5.命题关于的不等式的解集为的一个充分不必要条件是()A. B.C. D.6.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则7.,则()A.64 B.125C.256 D.6258.设,,,则,,三者的大小关系是()A. B.C. D.9.已知,且,则的最小值为A. B.C. D.10.在空间直角坐标系中,点关于平面的对称点是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数=,若对任意的都有成立,则实数的取值范围是______12.如图,单位圆上有一点,点P以点P0为起点按逆时针方向以每秒弧度作圆周运动,5秒后点P的纵坐标y是_____________.13.已知,,,则有最大值为__________14.函数f(x),若f(a)=4,则a=_____15.某挂钟秒针的端点A到中心点的距离为,秒针均匀地绕点旋转,当时间时,点A与钟面上标12的点重合,A与两点距离地面的高度差与存在函数关系式,则解析式___________,其中,一圈内A与两点距离地面的高度差不低于的时长为___________.16.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?18.已知函数,.求:(1)求函数在上的单调递减区间(2)画出函数在上的图象;19.已知函数的部分图象如图所示.(1)写出函数f(x)的最小正周期T及ω、φ的值;(2)求函数f(x)在区间上的最大值与最小值.20.设,.(1)求的值;(2)求与夹角的余弦值.21.如图,在四棱锥中,是正方形,平面,,,,分别是,,的中点()求四棱锥的体积()求证:平面平面()在线段上确定一点,使平面,并给出证明
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先分析出M的轨迹,再求到原点的距离的最小值.【详解】由题意可知:M点的轨迹为平行于直线和且到、距离相等的直线l,故其方程为:,故到原点的距离的最小值为.故选:C【点睛】解析几何中与动点有关的最值问题一般的求解思路:①几何法:利用图形作出对应的线段,利用几何法求最值;②代数法:把待求量的函数表示出来,利用函数求最值.2、C【解析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由,解得或,所以方程的所有实数根组成的集合为;故选:C3、A【解析】根据所给数据,求出样本中心点,把样本中心点代入所给四个选项中验证,即可得答案【详解】解:由已知可得,所以这组数据的样本中心点为,因样本中心必在回归直线上,所以把样本中心点代入四个选项中验证,可得只有成立,故选:A.4、C【解析】圆心为和,半径为和,圆心距离为,由于,故两圆相交.5、D【解析】根据三个二次式的性质,求得命题的充要条件,结合选项和充分不必要的判定方法,即可求解.【详解】由题意,命题不等式的解集为,即不等式的解集为,可得,解得,即命题的充要条件为,结合选项,可得,所以是的一个充分不必要条件.故选:D.6、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.7、D【解析】根据对数的运算及性质化简求解即可.【详解】,,,故选:D8、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D9、C【解析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【点睛】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题10、C【解析】关于平面对称的点坐标相反,另两个坐标相同,因此结论为二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:12、##【解析】根据单位圆上点的坐标求出,从而求出,从而求出点P的纵坐标.【详解】因为位于第一象限,且,故,所以,故,所以点P的纵坐标故答案为:13、4【解析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.14、1或8【解析】当时,,当时,,分别计算出的值,然后在检验.【详解】当时,,解得,满足条件.当时,,解得,满足条件所以或8.故对答案为:1或8【点睛】本题考查分段函数根据函数值求自变量,属于基础题.15、①.②.【解析】先求出经过,秒针转过的圆心角的为,进而表达出函数解析式,利用求出的解析式建立不等式,解出解集,得到答案.【详解】经过,秒针转过的圆心角为,得.由,得,又,故,得,解得:,故一圈内A与两点距离地面的高度差不低于的时长为.故答案为:,16、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)400;(2)不能获利,至少需要补贴35000元.【解析】(1)每月每吨的平均处理成本为,利用基本不等式求解即得最低成本;(2)写出该单位每月的获利f(x)关于x的函数,整理并利用二次函数的单调性求出最值即可作答.【小问1详解】由题意可知:,每吨二氧化碳的平均处理成本为:,当且仅当,即时,等号成立,∴该单位每月处理量为400吨时,每吨平均处理成本最低;【小问2详解】该单位每月的获利:,因,函数在区间上单调递减,从而得当时,函数取得最大值,即,所以,该单位每月不能获利,国家至少需要补贴35000元才能使该单位不亏损.18、(1)(2)图象见解析【解析】(1)由,得的范围,即可得函数在,上的单调递减区间(2)根据用五点法作函数的图象的步骤和方法,作出函数在,上的图象【小问1详解】因为,令,,解得,,令得:函数在区间,上的单调递减区间为:,【小问2详解】,列表如下:01001描点连线画出函数在一个周期上,的图象如图所示:19、(1),,;(2)最小值为,最大值为1.【解析】(1)由函数的部分图象求解析式,由周期求出,代入求出的值,可得函数的解析式;(2)由以上可得,,再利用正弦函数的定义域和值域,求得函数的最值.【详解】(1)根据函数的部分图象,可得,解得,,将代入可得,解得;(2)由以上可得,,,,,当时,即,函数取得最小值为.当时,即,函数取得最大值为1.【点睛】本题考查三角函数部分图象求解析式,考查三角函数给定区间的最值,属于基础题.20、(1)-2;(2).【解析】(1),,所以;(2)因为,所以代值即可得与夹角的余弦值.试题解析:(1)(2)因为,,所以.21、(1)(2)见解析(3)当为线段的中点时,满足使平面【解析】(1)根据线面垂直确定高线,再根据锥体体积公式求体积(2)先寻找线线平行,根据线面平行判定定理得线面平行,最后根据面面平行判定定理得结论(3)由题意可得平面,即,取线段的中点,则有,而,根据线面垂直判定定理得平面试题解析:()解:∵平面,∴()证明:∵,分别是,的中点∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:当为线段中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旧城改造拆迁委托合同
- 标准工程设计合同示范文本
- 2024版幼师临时工劳动合同
- 商场店面转让合同范例
- 13寒号鸟 公开课一等奖创新教学设计
- 有关经典的活动主题班会
- 新建传动小轮橡胶套项目立项申请报告
- 单杯架项目可行性研究报告
- 年产xx多用途货车项目建议书
- 年产xxx石雕瓶式楼台栏杆项目可行性研究报告(项目规划)
- 新部编(统编)人教版六年级上册语文期末复习全册分单元知识考点梳理
- 大马大马告诉我
- 电感耦合等离子体质谱仪分析(水质)原始记录
- 高考冲刺主题班会——勇往直前无畏风雨课件(17张PPT)
- 融优学堂人工智能(北京大学)章节测验答案
- 植物源农药的提取分离和结构鉴定基础
- 银行年度金融消费者权益保护工作自评报告
- (项目管理)项目管理硕士(MPM)项目
- 输尿管结石病人护理查房
- 田间管理记录表
- 下肢缺血分级
评论
0/150
提交评论