版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省百校联考高一上数学期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的最小值是()A.2 B.C.4 D.2.已知,且,则的最小值为()A.3 B.4C.6 D.93.下列四组函数中,表示同一函数的是()A. B.C D.4.函数f(x)图象大致为()A. B.C. D.5.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.7.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c8.四名学生按任意次序站成一排,若不相邻的概率是()A. B.C. D.9.已知函数,将的图象上所有点沿x轴平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,且函数的图象关于y轴对称,则的最小值是()A. B.C. D.10.定义在上的偶函数满足,且在上是减函数,若,是锐角三角形的两个内角,则下列各式一定成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调递增区间是___________.12.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________13.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___14.若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.15.已知点,,则以线段为直径的圆的标准方程是__________16.已知函数是定义在上的奇函数,当时,,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中且)是奇函数.(1)求的值;(2)若对任意的,都有不等式恒成立,求实数的取值范围.18.设集合.(1)当时,求实数的取值范围;(2)当时,求实数的取值范围.19.已知函数(1)求的定义域;(2)判断的奇偶性,并说明理由;(3)设,证明:20.已知,且求的值;求的值21.已知关于x,y的方程C:(1)当m为何值时,方程C表示圆;(2)在(1)的条件下,若圆C与直线l:相交于M、N两点,且|MN|=,求m的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据对数运算和指数运算可得,,再由以及基本不等式可得.【详解】因为,所以,所以,所以,所以,当且仅当即时,等号成立.故选:C.【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.2、A【解析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【详解】因为,故,故,当且仅当时等号成立,故的最小值为3.故选:A.【点睛】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.3、A【解析】求得每个选项中函数的定义域,结合对应关系是否相等,即可容易判断.【详解】对于A:,,定义域均为,两个函数的定义域和对应关系都相同,表示同一函数;对于B:的定义域为R,的定义域为,两个函数的定义域不同,不是同一函数;对于:的定义域为,的定义域为,两个函数的定义域不同,不是同一函数;对于D:的定义域为,的定义域为或,两个函数的定义域不同,不是同一函数.故选:A.【点睛】本题考查函数相等的判断,属简单题;注意函数定义域的求解.4、A【解析】根据函数图象的特征,利用奇偶性判断,再利用特殊值取舍.【详解】因为f(x)=f(x),所以f(x)是奇函数,排除B,C又因为,排除D故选:A【点睛】本题主要考查了函数的图象,还考查了理解辨析的能力,属于基础题.5、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.6、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.7、D【解析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【详解】对A,令a=1,b=-2,此时满足a>b,但a2<b对B,令a=1,b=-2,此时满足a>b,但1a>1对C,若c=0,a>b,则ac=bc,故C错;对D,∵a>b∴a-c>b-c,故D正确.故选:D.8、B【解析】利用捆绑法求出相邻的概率即可求解.【详解】四名学生按任意次序站成一排共有,相邻的站法有,相邻的的概率,故不相邻的概率是.故选:B【点睛】本题考查了排列数以及捆绑法在排列中的应用,同时考查了古典概型的概率计算公式.9、B【解析】先将解析式化简后,由三角函数图象变换得到的解析式后求解.【详解】若向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,由题意得,的最小值为;若向右平移个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到,同理得的最小值为,故选:B10、A【解析】根据题意,先得到是周期为的函数,再由函数单调性和奇偶性,得出在区间上是增函数;根据三角形是锐角三角,得到,得出,从而可得出结果.【详解】因为偶函数满足,所以函数是周期为的函数,又在区间上是减函数,所以在区间上是减函数,因为偶函数关于轴对称,所以在区间上是增函数;又,是锐角三角形的两个内角,所以,即,因此,即,所以.故选:A.【点睛】本题主要考查由函数的基本性质比较大小,涉及正弦函数的单调性,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.12、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次13、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.14、【解析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【详解】解:因,将的图像向左平移个单位,得到,又关于轴对称,所以,,所以,所以当时取最小值;故答案为:15、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.16、1【解析】根据题意,由函数在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函数为奇函数可得f(1)=﹣f(﹣1),即可得答案【详解】根据题意,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1,又由函数奇函数,则f(1)=﹣f(﹣1)=1;故答案为1【点睛】本题考查函数奇偶性的应用,注意利用奇偶性明确f(1)与f(﹣1)的关系三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据恒成立,计算可得的值;(2)将不等式恒成立转化为在上恒成立,令,则转化为,利用对勾函数的性质求得的最大值即可.【小问1详解】因为函数(其中且)是奇函数,,即恒成立,即恒成立,所以恒成立,整理得恒成立,,解得或,当时,显然不成立,当时,,由,可得或,,满足是奇函数,所以;【小问2详解】对任意的,都有不等式恒成立,恒成立,即在上恒成立,即在上恒成立,令,令,,根据对勾函数的性质可得在上单调递减,在上单调递增,又,,所以在上的最大值为,,即实数取值范围是18、(1)(2)【解析】(1)化简集合A,B,由,得,转化为不等式关系,解之即可;(2)由,得到或,解之即可.试题解析:(1),,,即.(2)法一:,或,即法二:当时,或解得或,于是时,即19、(1)(2)偶函数;理由见解析(3)证明见解析【解析】(1)根据对数函数的真数大于0建立不等式求解;(2)根据函数的奇偶性定义判断即可;(3)利用不等式的性质及对数函数的单调性证明即可.【小问1详解】因为,即,所以函数的定义域是【小问2详解】因为,都有,且,所以函数为偶函数【小问3详解】因为,所以所以所以因为是增函数,所以因为,,所以20、(1);(2)【解析】由.,利用同角三角函数关系式先求出,由此能求出的值利用同角三角函数关系式和诱导公式化简为,再化简为关于的齐次分式求值【详解】(1)因为.,所以,故(2)【点睛】本题考查三角函数值的求法,考查同角三角函数关系式和诱导公式等基础知识,考查运算求解能力,属于基础题型21、(1)m<5;(2)m=4【解析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版租赁合同:办公场地租赁及装修协议
- 2024年度艺术品买卖合同作品真伪鉴定
- 2024年二手住宅交易与按揭贷款协议2篇
- 现代技术服务费合同9
- 2024年度工程环境评估合同3篇
- 二零二四年度企业vi设计及实施合同2篇
- 二零二四年度品牌授权合同的品牌使用与授权期限3篇
- 2024年度智慧城市建设与技术合作合同
- 化工设计:第10章 设计中必须注意的几个问题
- 蓄水池建筑工程施工协议书
- 2024年防汛物资购销合同范本
- DB14-T 1811-2019 旅游景区民俗燃香基本要求
- 丝绸之路的开通与经营西域
- 2024-2025学年初中生物学七年级下册(2024)北师大版(2024)教学设计合集
- 期中测试卷(1-5单元)(试题)-2024-2025学年三年级上册数学人教版
- 24.1.3 弧、弦、圆心角 人教版数学九年级上册教案
- GB/T 13477.25-2024建筑密封材料试验方法第25 部分:耐霉菌性的测定
- 酒店保洁服务投标方案(技术方案)
- 初中物理学生实验操作技能大赛活动方案
- 食品卫生管理工作方案
- 歌曲春天的故事课件
评论
0/150
提交评论