波士顿咨询:GenAI不仅能提高生产力还能扩展功能_第1页
波士顿咨询:GenAI不仅能提高生产力还能扩展功能_第2页
波士顿咨询:GenAI不仅能提高生产力还能扩展功能_第3页
波士顿咨询:GenAI不仅能提高生产力还能扩展功能_第4页
波士顿咨询:GenAI不仅能提高生产力还能扩展功能_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GenAIDoesn’tJustIncreaseProductivity.ItExpands

Capabilities.

SEPTEMBER05,2024

By

DanielSack

,

LisaKrayer

,EmmaWiles,MohamedAbbadi,UrviAwasthi,RyanKennedy,CristiánArnolds,andFrançoisCandelon

READINGTIME:12MIN

ThisisthesecondmajorfieldexperimentledbytheBCGHendersonInstitutedesignedtohelpbusinessleadersunderstandhowhumansandGenAIshouldcollaborateintheworkplace.Ourpreviousstudy

assessedthe

valuecreated—anddestroyed—byGenAI

whenusedbyworkersfortaskstheyhadthe

©2024BostonConsultingGroup1

capabilitiestocompleteontheirown.OurlatestexperimenttestshowworkerscanuseGenAItocompletetasksthatarebeyondtheircurrentcapabilities.

Anewtypeofknowledgeworkerisenteringtheglobaltalentpool.Thisemployee,augmentedwith

generativeAI

,canwritecodefaster,createpersonalizedmarketingcontentwithasingleprompt,andsummarizehundredsofdocumentsinseconds.

Theseareimpressiveproductivitygains.Butasthenatureofmanyjobsandtheskillsrequiredtodothemevolve,workerswillneedtoexpandtheircurrentcapabilities.CanGenAIbeasolutionthereaswell?

Basedontheresultsof

anewexperiment

conductedbytheBCGHendersonInstituteandscholarsfromBostonUniversityandOpenAI’sEconomicImpactsresearchteam,theanswerisan

unequivocalyes.We’venowfoundthatit’spossibleforemployeeswhodidn’thavethefullknow-howtoperformaparticulartaskyesterdaytouseGenAItocompletethesametasktoday.

Employeeswhodidn’thavethefullknow-howtoperformaparticulartaskyesterdaycanuseGenAItocompletethesametasktoday.

Withthatinmind,leadersshouldembraceGenAInotonlyasatoolforincreasingproductivity,butas

a

technology

thatequipstheworkforcetomeetthechangingjobdemandsoftoday,tomorrow,andbeyond.TheyshouldconsidergenerativeAIanexoskeleton:atoolthatempowersworkersto

performbetter,anddomore,thaneitherthehumanorGenAIcanontheirown.

Ofcourse,thereareimportantcaveats—forexample,employeesmaynothavetherequisite

knowledgetochecktheirwork,andthereforemaynotknowwhenthetoolhasgottenitwrong.Ortheymaybecomelessattentiveinsituationswheretheyshouldbemorediscriminating.

Butleaderswhoeffectivelymanagetheriskscanreapsignificantrewards.TheabilitytorapidlytakeonnewtypesofworkwithGenAI—particularlytasksthattraditionallyrequirenicheskillsthatare

hardertofind,suchasdatascience—canbeagame-changerforindividualsandcompaniesalike.

HowGenAICanEquipKnowledgeWorkers

Inthepreviousexperiment,wemeasuredperformanceontasksthatwerewithintherealmoftheparticipants’

capabilities.1

(SeetoprowofExhibit1.)FortaskswhereGenAIishighlycapable,we

©2024BostonConsultingGroup2

foundthataugmentedworkersperformsignificantlybetterthanhumansworkingwithoutthe

technology.However,whenthetechnologyisnotcapableofperformingthetaskatexpertlevel,

humanstendtoover-relyonGenAIandperformworsethaniftheyhadcompletedthetaskontheirown.

:

Butwhathappenswhen,insteadofusingGenAItoimproveperformancewithintheircurrentskillset,peopleuseGenAItocompletetasksthatareoutsidetheirowncapabilities?DoesbeingaugmentedwithGenAIexpandthebreadthoftaskspeoplecanperform?

Forourlatestexperiment,morethan480BCGconsultantsperformedthreeshorttasksthatmimicacommondata-sciencepipeline:writingPythoncodetomergeandcleantwodatasets;buildinga

predictivemodelforsportsinvestingusinganalyticsbestpractices(e.g.machinelearning);and

validatingandcorrectingstatisticalanalysisoutputsgeneratedbyChatGPTandapplyingstatistical

2

metricstodetermineifreportedfindingsweremeaningful.

Whilethesetasksdon’tcapturetheentiretyofadvanceddatascientists’workload,theyare

sufficientlyrepresentative.Theyweredesignedtopresentasignificantchallengeforanyconsultant

3

andcouldnotbefullyautomatedbytheGenAItool.

TohelpevaluatetheperformanceimpactofGenAI,onlyhalfoftheparticipantsweregivenaccesstotheGenAItool,andwecomparedtheirresultstothoseof44datascientistswhoworkedwithouttheassistanceofGenAI.Whenwedivedeeperintotheresults,threecriticalfindingsemerge.

TheImmediateAptitude-ExpansionEffect

WhenusingGenAI,theconsultantsinourstudywereabletoinstantlyexpandtheiraptitudefornewtasks.Evenwhentheyhadnoexperienceincodingorstatistics,consultantswithaccesstoGenAI

wereabletowritecode,appropriatelyapplymachinelearningmodels,andcorrecterroneous

4

statisticalprocesses.(SeeExhibit2.)

©2024BostonConsultingGroup3

:

Weobservedthebiggestaptitude-expansioneffectforcoding,ataskatwhichGenAIishighlyadept.

Participantswereaskedtowritecodethatwouldcleantwosalesdatasetsbycorrectingmissingorinvaliddatapoints,mergingthedatasets,andfilteringtoidentifythetopfivecustomersina

specifiedmonth.

ParticipantswhousedGenAIachievedanaveragescoreequivalentto86%ofthebenchmarksetbydatascientists.Thisisa49-percentage-pointimprovementoverparticipantsnotusingGenAI.The

GenAI-augmentedgroupalsofinishedthetaskroughly10%fasterthanthedatascientists.

Eventhoseconsultantswhohadneverwrittencodebeforereached84%ofthedatascientists’

benchmarkwhenusingGenAI.Oneparticipantwhohadnocodingexperiencetoldus:“IfeelthatI’vebecomeacodernowandIdon’tknowhowtocode!Yet,IcanreachanoutcomethatIwouldn’thave

beenabletootherwise”ThoseworkingwithoutGenAI,ontheotherhand,o代endidnotgetmuch

furtherthanopeningthefilesandcleaningupthefirst“messy”datafields;theyachievedjust29%ofthedata-scientistbenchmark.

It’simportanttonotethatmostconsultantsareexpectedtoknowthebasicsofdatacleaningando代enperformdata-cleaningtasksusingno-codetoolssuchasAlteryx.Therefore,whiletheydidnothaveexperiencedoingthecodingtaskinPython,theyknewwhattoexpectfromacorrectoutput.

ThisiscriticalforanyGenAI-augmentedworker—iftheydon’thaveenoughknowledgetosupervisetheoutputofthetool,theywillnotknowwhenitismakingobviouserrors.

APowerfulBrainstormingPartner

Forthetaskthatinvolvedpredictiveanalytics,ourparticipantsfacedachallengingscenario:neithertheynortheGenAItoolwerehighlyadeptatthattask.Here,thetechnologywasstillvaluableasabrainstormingpartner.

©2024BostonConsultingGroup4

WhileallthetasksinourexperimentweredesignedsuchthattheGenAIcouldnotindependently

solvethem,thepredictive-analyticstaskrequiredthemostengagementfromparticipants.Theywereaskedtocreateapredictivemodel,usinghistoricaldataoninternationalsoccermatches,todevelopaninvestmentstrategy.Theirultimategoalwastoassesshowpredictable,orreliable,theirmodel

wouldbeformakinginvestmentdecisions.

ManyparticipantsusedGenAItobrainstorm,combiningtheirknowledgewiththetool’sknowledgetodiscovernewmodelingandproblem-

solvingtechniques.

AsshowninExhibit2,thiswasthetaskonwhichtheGenAI-augmentedconsultantwasleastlikelytoperformonparwithadatascientist,regardlessofpreviousexperienceincodingorstatistics.ThisisbecausetheGenAItoolislikelytomisunderstandtheultimategoalofthepromptiftheentiretaskiscopiedandpasteddirectlyintothetoolwithoutbreakingthequestionintopartsorclarifyingthe

goals.Asaresult,participantswithaccesstoGenAIweremorelikelytobeledastraythantheirnonaugmentedcounterparts.

Evenso,wefoundthat,withthesupportofGenAI,manyparticipantswereabletostepoutsidetheircomfortzone.Theybrainstormedwiththetool,combiningtheirknowledgewithGenAI’sknowledge

todiscovernewmodelingtechniquesandidentifythecorrectstepstosolvetheproblemsuccessfully.TheGenAI-augmentedparticipantswere15percentagepointsmorelikelytoselectandappropriatelyapplymachine-learningmethodsthantheircounterpartswhodidnothaveaccesstoGenAI.

Reskilled,butOnlyWhenAugmented

Participants’aptitudeforcompletingnewandchallengingtaskswasimmediatelyboostedwhen

usingGenAI,butweretheyreskilled?Reskillingisdefinedasanindividualgainingnewcapabilitiesorknowledgethatenableshimorhertomoveintoanewjoborindustry.Wefoundinourstudythat

GenAI-augmentedworkerswereinasense“reskilled,”inthattheygainednewcapabilitiesthatwerebeyondwhateitherthehumanorGenAIcoulddoontheirown.ButGenAIwasonlyanexoskeleton;theparticipantswerenotintrinsicallyreskilled,because“doing”withGenAIdoesnotimmediately

norinherentlymean“learningtodo”

Whileeachparticipantwasassignedjusttwoofthethreetasksintheexperiment,wegaveeveryoneafinalassessmentwithquestionsrelatedtoallthreetaskstotesthowmuchtheyactuallylearned.Forexample,weaskedacodingsyntaxquestioneventhoughnoteveryonedidthecodingtask—andthereforenoteveryonewouldhavehadachanceto“learn”syntax.Yetthepeoplewhoparticipated

©2024BostonConsultingGroup5

inthecodingtaskscoredthesameontheassessmentaspeoplewhodidn’tdothecodingtask.

Performingthedata-sciencetasksinourexperimentthusdidnotincreaseparticipants’knowledge.

Ofcourse,participantsonlyhad90minutestocompletethetask.Withrepetition,morelearningmighthaveoccurred.Wealsodidn’tinformparticipantsthattheywouldbetestedattheend,soincentivizinglearningmightalsohavehelped.Thisisimportant,becausewefoundthathavingatleastsomebackgroundknowledgeofagivensubjectmatters.

WefoundthatcodingexperienceisakeysuccessfactorforworkerswhouseGenAI—evenfortasksthatdon’tinvolvecoding.

GenAI-augmentedparticipantswithmoderatecodingexperienceperformed10to20percentage

pointsbetteronallthreetasksthantheirpeerswhoself-identifiedasnovices,evenwhencodingwas

5

notinvolved.Infact,thosewithmoderatecodingexperiencewerefullyonparwithdatascientistsfortwoofthethreetasks—oneofwhichhadzerocodinginvolved.

Basedonthis,wepositthatitistheengineeringmindsetthatcodinghelpsdevelop—forexample,havingtheabilitytobreakaproblemdownintosubcomponentsthatcanbeeffectivelycheckedandcorrected—thatultimatelymatters,moresothanthecodingexperienceitself.

Theriskoffullyautomatingcode,then,isthatpeopledon’tformthismindset—becausehowdoyoumaintainthisskillwhenthesourceofitsdevelopmentisnolongerneeded?Thisispartofalarger

discussion:Whatotherseeminglyautomatableskillshavesuchimportance?WilltheseskillsbecomethenewLatin,taughtmostlytocultivateaparticularmindset?

©2024BostonConsultingGroup6

:

ManagingtheTransition

Whilewehaveuseddatascienceasacasestudy,webelievethatourfinding—thataugmentedworkerscanskillfullyperformnewtasks—canbeappliedtoanyfieldthatiswithinthetool’s

capabilities.We’veidentifiedfivecoreimplicationsforcompanyleaders.(SeeExhibit3.)

TalentAcquisitionandInternalMobility.Theresultsacrossourworkforceexperimentshave

shownthatwhatanindividualcanperformonhisorherownbynomeansapproacheswhatcanbeaccomplishedwhenaugmentedbyGenAI.Thissuggeststhatthetalentpoolforskilledknowledge

workisexpanding.

RecruitersshouldthereforeincorporateGenAIintotheinterviewprocesstogetamorecompletepictureofwhataprospectiveemployeemightbecapableofwhenaugmentedbythetechnology.

Leadersmayalsofindthatanunlikelypersoninsidetheirorganizationcanfillanopenrole.We’re

notsuggestingthatnontechnicalgeneralistscanimmediatelybecomedatascientists.Butageneralistmarketercould,forexample,takeonmarketinganalysttasksorroles.

LearningandDevelopment.Whatdoesthismeanforemployeesseekingpathstoseniorroles

and/orleadership?HowshouldmembersoftheGenAI-augmentedworkforce,whocanflexiblytakeonvariousroles,cultivatetherightskillsforcareeradvancement—andwhatarethemostimportantskillsforthemtoretainlongterm?

©2024BostonConsultingGroup7

WhileGenAIhasanimmediateaptitude-expansioneffect,learninganddevelopmentremainthemostimportleverforcultivatingadvancedskillsandsupportingeachemployee’sprofessional

trajectory.Leadersthereforemustensurethatemployeeshaveincentivizedandprotectedtimetolearn.

Otherresearch

hasshownthatwhenspecificallyusedforlearning(and,unlikeour

participants,peoplearegenerallyincentivizedtolearnintheirjobs),GenAIisaneffectivepersonalizedtrainingtool.

LeadersshouldensurethatfutureimplementationsofGenAItoolsincludethefunctionalitytoinformtheuserifataskisoutsidethetechnology’s

capabilityset.

Ouranalysisalsosuggeststhatdevelopingsometechnicalskillsleadstogreaterperformance,evenfornontechnicalworkers.Regardlessofthetrainingemployeesreceive,companyleadersshould

ensuretheirfutureimplementationsofGenAItoolsincludethefunctionalitytoinformtheuserifataskisoutsidethetechnology’scapabilityset—informationthatshouldbecompiledfromregularbenchmarking.

Companiesarelikelytofindcompetitiveadvantagefromdevelopingtoolsandprocessesthat

preciselyassessthecapabilitiesofGenAImodelsfortheirusecases.AsshowninExhibit1,howaworkershoulduseGenAIgreatlydependsonunderstandingwhereatasklieswithintheirownskillsetandwithinthecapabilitiesofthetechnology.

TeamingandPerformanceManagement.Althoughourresultsshowitispossibleforageneralisttotakeonmorecomplexknowledgework,itwillbecrucialtomanagetheirperformanceandensurethequalityoftheiroutput.Thiscouldmeandesigningcross-functionalteamstoprovidegeneralistswitheasyaccesstoanexpertwhentheyneedhelpandestablishingregularoutput-review

checkpoints—becauseanoverconfidentgeneralistmaynotalwaysknowwhentoaskforsupport.

Leaderswillneedtorunpilotstoensuretheirteamingconfigurationsleadtothebestoutcomes.Thismaybeanopportunitytobreaksilosandintegrateteamsofgeneralistswithexpertsfromvarious

centersofexcellence.

StrategicWorkforcePlanning.Giventheimplicationsfortalentandteaming,howshould

organizationsthinkaboutspecializedexperttracksandthestructureoftheirworkforce?Whatdoesstrategicworkforceplanningforknowledgeworkmeaninaworldofconstantjobtransformation

andtechnologicaladvancement?Wedon’thavealltheanswers.Butwedoseethattheskillsneeded

©2024BostonConsultingGroup8

foragivenroleareblurring,andworkforceplanningwillnolongerbesolelyfocusedonfindingacertainnumberofpeoplewithaspecificknowledgeskill,suchascoding.

Instead,planningshouldincludeafocusonbehavioralskillsandenablersthatwillsupportamoreflexibleworkforce.WhileknowledgeworkersmaybetechnicallycapableoftakingonnewroleswiththehelpofGenAI,noteveryoneisequallyadeptatembracingchange.

ProfessionalIdentity.TheimpactofGenAIonprofessionalidentityisanimportantandcontentioustopic.Buta

recentsurvey

suggeststhatnegativeimpactscanbemitigatedwhenemployeesfeelsupportedbytheiremployers.

Infact,inourstudy,wefoundthat82%ofconsultantswhoregularlyuseGenAIforworkagreewiththestatements“GenerativeAIhelpsmefeelconfidentinmyrole”and“IthinkmycoworkersenjoyusingGenAIfortheirwork,”comparedto67%ofworkerswhodon’tuseitonaweeklybasis.Morethan80%ofparticipantsagreedthatGenAIenhancestheirproblem-solvingskillsandhelpsthemachievefasteroutputs.

Thissuggeststhathighlyskilledknowledgeworkersgenuinelyenjoyusingthetoolwhenitallows

themtofeelmoreconfidentintheirrole—whichalignswithourpreviousfindingsthat

mandating

theuseofAI

canactuallyimproveemployeeperceptionofAI.However,thisisonlytrueif

employees

believethatAIisbeingdeployedtotheirbenefit

.

WeareonlyatthebeginningoftheGenAItransformationjourney,andthetechnology’scapabilitieswillcontinuetoexpand.Executivesneedtobethinkingcriticallyabouthowtoplanforthisfuture,

includinghowtoredefineexpertiseandwhatskillstoretaininthelongterm.

Buttheyarenotalone:

Skilldevelopment

isacollaborativeeffortthatincludeseducationsystems,corporateefforts,andenablementplatformssuchasUdemyandCoursera.Eventheprovidersof

GenAImodelsshouldbethinkingabouthowtheirtoolscanfurtherenablelearningand

development.PreparingfortheGenAI-augmentedworkforcemustbeacollectiveendeavor—becauseourcollectivefuturedependsonit.

⃞BCGHENDERSONINSTTTUTB

TheBCGHendersonInstituteisBostonConsultingGroup’sstrategythinktank,dedicatedto

exploringanddevelopingvaluablenewinsightsfrombusiness,technology,andsciencebyembracing

thepowerfultechnologyofideas.TheInstituteengagesleadersinprovocativediscussionandexperimentationtoexpandtheboundariesofbusinesstheoryandpracticeandtotranslate

innovativeideasfromwithinandbeyondbusiness.FormoreideasandinspirationfromtheInstitute,pleasevisitour

website

andfollowuson

LinkedIn

and

X(formerlyTwitter)

.

©2024BostonConsultingGroup9

Authors

DanielSack

MANAGINGDIRECTOR&PARTNER

Stockholm

LisaKrayer

PRINCIPAL

Washington,DC

EmmaWiles

ASSISTANTPROFESSOROFINFORMATIONSYSTEMS,

BOSTONUNIVERSITY’SQUESTROMSCHOOLOFBUSINESS

MohamedAbbadi

CONSULTANT

Washington,DC

UrviAwasthi

DATASCIENTIST

NewYork

RyanKennedy

AIENGINEER

Boston

CristiánArnolds

CONSULTANT

NewYork

FrançoisCandelon

ALUMNUS

©2024BostonConsultingGroup10

1ThatexperimentwasconductedusingthefirstversionofGPT-4.

2Oftheconsultantswhooriginallysigneduptoparticipate,480

completedtheexperiment.Participantswererandomlysplitintoa

controlgroupthatwasnotallowedtouseGenAIforthetasksanda

“treatment”groupthatwasaskedtouseGenAI.Each

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论