




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GenAIDoesn’tJustIncreaseProductivity.ItExpands
Capabilities.
SEPTEMBER05,2024
By
DanielSack
,
LisaKrayer
,EmmaWiles,MohamedAbbadi,UrviAwasthi,RyanKennedy,CristiánArnolds,andFrançoisCandelon
READINGTIME:12MIN
ThisisthesecondmajorfieldexperimentledbytheBCGHendersonInstitutedesignedtohelpbusinessleadersunderstandhowhumansandGenAIshouldcollaborateintheworkplace.Ourpreviousstudy
assessedthe
valuecreated—anddestroyed—byGenAI
whenusedbyworkersfortaskstheyhadthe
©2024BostonConsultingGroup1
capabilitiestocompleteontheirown.OurlatestexperimenttestshowworkerscanuseGenAItocompletetasksthatarebeyondtheircurrentcapabilities.
Anewtypeofknowledgeworkerisenteringtheglobaltalentpool.Thisemployee,augmentedwith
generativeAI
,canwritecodefaster,createpersonalizedmarketingcontentwithasingleprompt,andsummarizehundredsofdocumentsinseconds.
Theseareimpressiveproductivitygains.Butasthenatureofmanyjobsandtheskillsrequiredtodothemevolve,workerswillneedtoexpandtheircurrentcapabilities.CanGenAIbeasolutionthereaswell?
Basedontheresultsof
anewexperiment
conductedbytheBCGHendersonInstituteandscholarsfromBostonUniversityandOpenAI’sEconomicImpactsresearchteam,theanswerisan
unequivocalyes.We’venowfoundthatit’spossibleforemployeeswhodidn’thavethefullknow-howtoperformaparticulartaskyesterdaytouseGenAItocompletethesametasktoday.
“
Employeeswhodidn’thavethefullknow-howtoperformaparticulartaskyesterdaycanuseGenAItocompletethesametasktoday.
Withthatinmind,leadersshouldembraceGenAInotonlyasatoolforincreasingproductivity,butas
a
technology
thatequipstheworkforcetomeetthechangingjobdemandsoftoday,tomorrow,andbeyond.TheyshouldconsidergenerativeAIanexoskeleton:atoolthatempowersworkersto
performbetter,anddomore,thaneitherthehumanorGenAIcanontheirown.
Ofcourse,thereareimportantcaveats—forexample,employeesmaynothavetherequisite
knowledgetochecktheirwork,andthereforemaynotknowwhenthetoolhasgottenitwrong.Ortheymaybecomelessattentiveinsituationswheretheyshouldbemorediscriminating.
Butleaderswhoeffectivelymanagetheriskscanreapsignificantrewards.TheabilitytorapidlytakeonnewtypesofworkwithGenAI—particularlytasksthattraditionallyrequirenicheskillsthatare
hardertofind,suchasdatascience—canbeagame-changerforindividualsandcompaniesalike.
HowGenAICanEquipKnowledgeWorkers
Inthepreviousexperiment,wemeasuredperformanceontasksthatwerewithintherealmoftheparticipants’
capabilities.1
(SeetoprowofExhibit1.)FortaskswhereGenAIishighlycapable,we
©2024BostonConsultingGroup2
foundthataugmentedworkersperformsignificantlybetterthanhumansworkingwithoutthe
technology.However,whenthetechnologyisnotcapableofperformingthetaskatexpertlevel,
humanstendtoover-relyonGenAIandperformworsethaniftheyhadcompletedthetaskontheirown.
:
Butwhathappenswhen,insteadofusingGenAItoimproveperformancewithintheircurrentskillset,peopleuseGenAItocompletetasksthatareoutsidetheirowncapabilities?DoesbeingaugmentedwithGenAIexpandthebreadthoftaskspeoplecanperform?
Forourlatestexperiment,morethan480BCGconsultantsperformedthreeshorttasksthatmimicacommondata-sciencepipeline:writingPythoncodetomergeandcleantwodatasets;buildinga
predictivemodelforsportsinvestingusinganalyticsbestpractices(e.g.machinelearning);and
validatingandcorrectingstatisticalanalysisoutputsgeneratedbyChatGPTandapplyingstatistical
2
metricstodetermineifreportedfindingsweremeaningful.
Whilethesetasksdon’tcapturetheentiretyofadvanceddatascientists’workload,theyare
sufficientlyrepresentative.Theyweredesignedtopresentasignificantchallengeforanyconsultant
3
andcouldnotbefullyautomatedbytheGenAItool.
TohelpevaluatetheperformanceimpactofGenAI,onlyhalfoftheparticipantsweregivenaccesstotheGenAItool,andwecomparedtheirresultstothoseof44datascientistswhoworkedwithouttheassistanceofGenAI.Whenwedivedeeperintotheresults,threecriticalfindingsemerge.
TheImmediateAptitude-ExpansionEffect
WhenusingGenAI,theconsultantsinourstudywereabletoinstantlyexpandtheiraptitudefornewtasks.Evenwhentheyhadnoexperienceincodingorstatistics,consultantswithaccesstoGenAI
wereabletowritecode,appropriatelyapplymachinelearningmodels,andcorrecterroneous
4
statisticalprocesses.(SeeExhibit2.)
©2024BostonConsultingGroup3
:
Weobservedthebiggestaptitude-expansioneffectforcoding,ataskatwhichGenAIishighlyadept.
Participantswereaskedtowritecodethatwouldcleantwosalesdatasetsbycorrectingmissingorinvaliddatapoints,mergingthedatasets,andfilteringtoidentifythetopfivecustomersina
specifiedmonth.
ParticipantswhousedGenAIachievedanaveragescoreequivalentto86%ofthebenchmarksetbydatascientists.Thisisa49-percentage-pointimprovementoverparticipantsnotusingGenAI.The
GenAI-augmentedgroupalsofinishedthetaskroughly10%fasterthanthedatascientists.
Eventhoseconsultantswhohadneverwrittencodebeforereached84%ofthedatascientists’
benchmarkwhenusingGenAI.Oneparticipantwhohadnocodingexperiencetoldus:“IfeelthatI’vebecomeacodernowandIdon’tknowhowtocode!Yet,IcanreachanoutcomethatIwouldn’thave
beenabletootherwise”ThoseworkingwithoutGenAI,ontheotherhand,o代endidnotgetmuch
furtherthanopeningthefilesandcleaningupthefirst“messy”datafields;theyachievedjust29%ofthedata-scientistbenchmark.
It’simportanttonotethatmostconsultantsareexpectedtoknowthebasicsofdatacleaningando代enperformdata-cleaningtasksusingno-codetoolssuchasAlteryx.Therefore,whiletheydidnothaveexperiencedoingthecodingtaskinPython,theyknewwhattoexpectfromacorrectoutput.
ThisiscriticalforanyGenAI-augmentedworker—iftheydon’thaveenoughknowledgetosupervisetheoutputofthetool,theywillnotknowwhenitismakingobviouserrors.
APowerfulBrainstormingPartner
Forthetaskthatinvolvedpredictiveanalytics,ourparticipantsfacedachallengingscenario:neithertheynortheGenAItoolwerehighlyadeptatthattask.Here,thetechnologywasstillvaluableasabrainstormingpartner.
©2024BostonConsultingGroup4
WhileallthetasksinourexperimentweredesignedsuchthattheGenAIcouldnotindependently
solvethem,thepredictive-analyticstaskrequiredthemostengagementfromparticipants.Theywereaskedtocreateapredictivemodel,usinghistoricaldataoninternationalsoccermatches,todevelopaninvestmentstrategy.Theirultimategoalwastoassesshowpredictable,orreliable,theirmodel
wouldbeformakinginvestmentdecisions.
“
ManyparticipantsusedGenAItobrainstorm,combiningtheirknowledgewiththetool’sknowledgetodiscovernewmodelingandproblem-
solvingtechniques.
AsshowninExhibit2,thiswasthetaskonwhichtheGenAI-augmentedconsultantwasleastlikelytoperformonparwithadatascientist,regardlessofpreviousexperienceincodingorstatistics.ThisisbecausetheGenAItoolislikelytomisunderstandtheultimategoalofthepromptiftheentiretaskiscopiedandpasteddirectlyintothetoolwithoutbreakingthequestionintopartsorclarifyingthe
goals.Asaresult,participantswithaccesstoGenAIweremorelikelytobeledastraythantheirnonaugmentedcounterparts.
Evenso,wefoundthat,withthesupportofGenAI,manyparticipantswereabletostepoutsidetheircomfortzone.Theybrainstormedwiththetool,combiningtheirknowledgewithGenAI’sknowledge
todiscovernewmodelingtechniquesandidentifythecorrectstepstosolvetheproblemsuccessfully.TheGenAI-augmentedparticipantswere15percentagepointsmorelikelytoselectandappropriatelyapplymachine-learningmethodsthantheircounterpartswhodidnothaveaccesstoGenAI.
Reskilled,butOnlyWhenAugmented
Participants’aptitudeforcompletingnewandchallengingtaskswasimmediatelyboostedwhen
usingGenAI,butweretheyreskilled?Reskillingisdefinedasanindividualgainingnewcapabilitiesorknowledgethatenableshimorhertomoveintoanewjoborindustry.Wefoundinourstudythat
GenAI-augmentedworkerswereinasense“reskilled,”inthattheygainednewcapabilitiesthatwerebeyondwhateitherthehumanorGenAIcoulddoontheirown.ButGenAIwasonlyanexoskeleton;theparticipantswerenotintrinsicallyreskilled,because“doing”withGenAIdoesnotimmediately
norinherentlymean“learningtodo”
Whileeachparticipantwasassignedjusttwoofthethreetasksintheexperiment,wegaveeveryoneafinalassessmentwithquestionsrelatedtoallthreetaskstotesthowmuchtheyactuallylearned.Forexample,weaskedacodingsyntaxquestioneventhoughnoteveryonedidthecodingtask—andthereforenoteveryonewouldhavehadachanceto“learn”syntax.Yetthepeoplewhoparticipated
©2024BostonConsultingGroup5
inthecodingtaskscoredthesameontheassessmentaspeoplewhodidn’tdothecodingtask.
Performingthedata-sciencetasksinourexperimentthusdidnotincreaseparticipants’knowledge.
Ofcourse,participantsonlyhad90minutestocompletethetask.Withrepetition,morelearningmighthaveoccurred.Wealsodidn’tinformparticipantsthattheywouldbetestedattheend,soincentivizinglearningmightalsohavehelped.Thisisimportant,becausewefoundthathavingatleastsomebackgroundknowledgeofagivensubjectmatters.
“
WefoundthatcodingexperienceisakeysuccessfactorforworkerswhouseGenAI—evenfortasksthatdon’tinvolvecoding.
GenAI-augmentedparticipantswithmoderatecodingexperienceperformed10to20percentage
pointsbetteronallthreetasksthantheirpeerswhoself-identifiedasnovices,evenwhencodingwas
5
notinvolved.Infact,thosewithmoderatecodingexperiencewerefullyonparwithdatascientistsfortwoofthethreetasks—oneofwhichhadzerocodinginvolved.
Basedonthis,wepositthatitistheengineeringmindsetthatcodinghelpsdevelop—forexample,havingtheabilitytobreakaproblemdownintosubcomponentsthatcanbeeffectivelycheckedandcorrected—thatultimatelymatters,moresothanthecodingexperienceitself.
Theriskoffullyautomatingcode,then,isthatpeopledon’tformthismindset—becausehowdoyoumaintainthisskillwhenthesourceofitsdevelopmentisnolongerneeded?Thisispartofalarger
discussion:Whatotherseeminglyautomatableskillshavesuchimportance?WilltheseskillsbecomethenewLatin,taughtmostlytocultivateaparticularmindset?
©2024BostonConsultingGroup6
:
ManagingtheTransition
Whilewehaveuseddatascienceasacasestudy,webelievethatourfinding—thataugmentedworkerscanskillfullyperformnewtasks—canbeappliedtoanyfieldthatiswithinthetool’s
capabilities.We’veidentifiedfivecoreimplicationsforcompanyleaders.(SeeExhibit3.)
TalentAcquisitionandInternalMobility.Theresultsacrossourworkforceexperimentshave
shownthatwhatanindividualcanperformonhisorherownbynomeansapproacheswhatcanbeaccomplishedwhenaugmentedbyGenAI.Thissuggeststhatthetalentpoolforskilledknowledge
workisexpanding.
RecruitersshouldthereforeincorporateGenAIintotheinterviewprocesstogetamorecompletepictureofwhataprospectiveemployeemightbecapableofwhenaugmentedbythetechnology.
Leadersmayalsofindthatanunlikelypersoninsidetheirorganizationcanfillanopenrole.We’re
notsuggestingthatnontechnicalgeneralistscanimmediatelybecomedatascientists.Butageneralistmarketercould,forexample,takeonmarketinganalysttasksorroles.
LearningandDevelopment.Whatdoesthismeanforemployeesseekingpathstoseniorroles
and/orleadership?HowshouldmembersoftheGenAI-augmentedworkforce,whocanflexiblytakeonvariousroles,cultivatetherightskillsforcareeradvancement—andwhatarethemostimportantskillsforthemtoretainlongterm?
©2024BostonConsultingGroup7
WhileGenAIhasanimmediateaptitude-expansioneffect,learninganddevelopmentremainthemostimportleverforcultivatingadvancedskillsandsupportingeachemployee’sprofessional
trajectory.Leadersthereforemustensurethatemployeeshaveincentivizedandprotectedtimetolearn.
Otherresearch
hasshownthatwhenspecificallyusedforlearning(and,unlikeour
participants,peoplearegenerallyincentivizedtolearnintheirjobs),GenAIisaneffectivepersonalizedtrainingtool.
“
LeadersshouldensurethatfutureimplementationsofGenAItoolsincludethefunctionalitytoinformtheuserifataskisoutsidethetechnology’s
capabilityset.
Ouranalysisalsosuggeststhatdevelopingsometechnicalskillsleadstogreaterperformance,evenfornontechnicalworkers.Regardlessofthetrainingemployeesreceive,companyleadersshould
ensuretheirfutureimplementationsofGenAItoolsincludethefunctionalitytoinformtheuserifataskisoutsidethetechnology’scapabilityset—informationthatshouldbecompiledfromregularbenchmarking.
Companiesarelikelytofindcompetitiveadvantagefromdevelopingtoolsandprocessesthat
preciselyassessthecapabilitiesofGenAImodelsfortheirusecases.AsshowninExhibit1,howaworkershoulduseGenAIgreatlydependsonunderstandingwhereatasklieswithintheirownskillsetandwithinthecapabilitiesofthetechnology.
TeamingandPerformanceManagement.Althoughourresultsshowitispossibleforageneralisttotakeonmorecomplexknowledgework,itwillbecrucialtomanagetheirperformanceandensurethequalityoftheiroutput.Thiscouldmeandesigningcross-functionalteamstoprovidegeneralistswitheasyaccesstoanexpertwhentheyneedhelpandestablishingregularoutput-review
checkpoints—becauseanoverconfidentgeneralistmaynotalwaysknowwhentoaskforsupport.
Leaderswillneedtorunpilotstoensuretheirteamingconfigurationsleadtothebestoutcomes.Thismaybeanopportunitytobreaksilosandintegrateteamsofgeneralistswithexpertsfromvarious
centersofexcellence.
StrategicWorkforcePlanning.Giventheimplicationsfortalentandteaming,howshould
organizationsthinkaboutspecializedexperttracksandthestructureoftheirworkforce?Whatdoesstrategicworkforceplanningforknowledgeworkmeaninaworldofconstantjobtransformation
andtechnologicaladvancement?Wedon’thavealltheanswers.Butwedoseethattheskillsneeded
©2024BostonConsultingGroup8
foragivenroleareblurring,andworkforceplanningwillnolongerbesolelyfocusedonfindingacertainnumberofpeoplewithaspecificknowledgeskill,suchascoding.
Instead,planningshouldincludeafocusonbehavioralskillsandenablersthatwillsupportamoreflexibleworkforce.WhileknowledgeworkersmaybetechnicallycapableoftakingonnewroleswiththehelpofGenAI,noteveryoneisequallyadeptatembracingchange.
ProfessionalIdentity.TheimpactofGenAIonprofessionalidentityisanimportantandcontentioustopic.Buta
recentsurvey
suggeststhatnegativeimpactscanbemitigatedwhenemployeesfeelsupportedbytheiremployers.
Infact,inourstudy,wefoundthat82%ofconsultantswhoregularlyuseGenAIforworkagreewiththestatements“GenerativeAIhelpsmefeelconfidentinmyrole”and“IthinkmycoworkersenjoyusingGenAIfortheirwork,”comparedto67%ofworkerswhodon’tuseitonaweeklybasis.Morethan80%ofparticipantsagreedthatGenAIenhancestheirproblem-solvingskillsandhelpsthemachievefasteroutputs.
Thissuggeststhathighlyskilledknowledgeworkersgenuinelyenjoyusingthetoolwhenitallows
themtofeelmoreconfidentintheirrole—whichalignswithourpreviousfindingsthat
mandating
theuseofAI
canactuallyimproveemployeeperceptionofAI.However,thisisonlytrueif
employees
believethatAIisbeingdeployedtotheirbenefit
.
WeareonlyatthebeginningoftheGenAItransformationjourney,andthetechnology’scapabilitieswillcontinuetoexpand.Executivesneedtobethinkingcriticallyabouthowtoplanforthisfuture,
includinghowtoredefineexpertiseandwhatskillstoretaininthelongterm.
Buttheyarenotalone:
Skilldevelopment
isacollaborativeeffortthatincludeseducationsystems,corporateefforts,andenablementplatformssuchasUdemyandCoursera.Eventheprovidersof
GenAImodelsshouldbethinkingabouthowtheirtoolscanfurtherenablelearningand
development.PreparingfortheGenAI-augmentedworkforcemustbeacollectiveendeavor—becauseourcollectivefuturedependsonit.
⃞BCGHENDERSONINSTTTUTB
TheBCGHendersonInstituteisBostonConsultingGroup’sstrategythinktank,dedicatedto
exploringanddevelopingvaluablenewinsightsfrombusiness,technology,andsciencebyembracing
thepowerfultechnologyofideas.TheInstituteengagesleadersinprovocativediscussionandexperimentationtoexpandtheboundariesofbusinesstheoryandpracticeandtotranslate
innovativeideasfromwithinandbeyondbusiness.FormoreideasandinspirationfromtheInstitute,pleasevisitour
website
andfollowuson
and
X(formerlyTwitter)
.
©2024BostonConsultingGroup9
Authors
DanielSack
MANAGINGDIRECTOR&PARTNER
Stockholm
LisaKrayer
PRINCIPAL
Washington,DC
EmmaWiles
ASSISTANTPROFESSOROFINFORMATIONSYSTEMS,
BOSTONUNIVERSITY’SQUESTROMSCHOOLOFBUSINESS
MohamedAbbadi
CONSULTANT
Washington,DC
UrviAwasthi
DATASCIENTIST
NewYork
RyanKennedy
AIENGINEER
Boston
CristiánArnolds
CONSULTANT
NewYork
FrançoisCandelon
ALUMNUS
©2024BostonConsultingGroup10
1ThatexperimentwasconductedusingthefirstversionofGPT-4.
2Oftheconsultantswhooriginallysigneduptoparticipate,480
completedtheexperiment.Participantswererandomlysplitintoa
controlgroupthatwasnotallowedtouseGenAIforthetasksanda
“treatment”groupthatwasaskedtouseGenAI.Each
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 11葡萄沟(教学设计)-2024-2025学年语文二年级上册统编版
- 第18课 世界主要国家的基层治理与社会保障教学设计-2024-2025学年高中历史统编版(2019)选择性必修1国家制度与社会治理
- 12 醉翁亭记2024-2025学年九年级语文上册同步教学设计(河北专版)
- 2025年江南影视艺术职业学院单招职业技能测试题库完整版
- 2025年贵州省贵阳市单招职业倾向性测试题库完美版
- 2025年湖南生物机电职业技术学院单招职业倾向性测试题库含答案
- 研究性学习课题 四 蒸馏法海水淡化 教学设计- 2023-2024学年浙教版科学七年级上册
- 2025年湖南省衡阳市单招职业倾向性测试题库一套
- 2024年高考6月浙江卷物理真题及答案
- 10《 爬山虎的脚》(教学设计)-2024-2025学年语文四年级上册统编版
- 2024年关于加强社区工作者队伍建设的意见课件
- 2024年松溪县城投实业集团有限公司招聘笔试冲刺题(带答案解析)
- DZ∕T 0214-2020 矿产地质勘查规范 铜、铅、锌、银、镍、钼(正式版)
- 1企业网络与信息安全管理组织架构
- 绿色建筑设计标准-云南
- 《公路智慧养护信息化建设指南(征求意见稿)》
- 《书籍装帧设计》 课件 项目4 书籍装帧版式设计
- 作物栽培学课件
- 2024年辽宁大连中远海运川崎船舶工程有限公司招聘笔试参考题库含答案解析
- 《单层厂房钢结构》
- 人音版二年级上册第六课《跳起舞》 单元作业设计
评论
0/150
提交评论