2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】_第1页
2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】_第2页
2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】_第3页
2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】_第4页
2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形2、(4分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(-3,1) B.(4,1)C.(-2,1) D.(2,-1)3、(4分)若顺次连接四边形各边中点所得到的四边形是菱形,则该四边形一定是()A.矩形 B.对角线相等的四边形C.正方形 D.对角线互相垂直的四边形4、(4分)一次函数y=kx+b,当k>0,b<0时,它的图象是()A. B. C. D.5、(4分)直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.6.5 D.8.56、(4分)关于的一元二次方程(,是常数,且),()A.若,则方程可能有两个相等的实数根 B.若,则方程可能没有实数根C.若,则方程可能有两个相等的实数根 D.若,则方程没有实数根7、(4分)如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.2 B.3 C.4 D.28、(4分)下列判定中,正确的个数有()①一组对边平行,一组对边相等的四边形是平行四边形;②对角线互相平分且相等的四边形是矩形;③对角线互相垂直的四边形是菱形;④对角线互相垂直平分且相等的四边形是正方形,A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.10、(4分)如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.11、(4分)在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).12、(4分)下表是某校女子羽毛球队队员的年龄分布:年龄/岁13141516人数1121则该校女子排球队队员年龄的中位数为__________岁.13、(4分)如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=__三、解答题(本大题共5个小题,共48分)14、(12分)如图,在四边形中,,,,,,点从点出发,以每秒单位的速度向点运动,点从点同时出发,以每秒单位的速度向点运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为秒.(1)当时,若以点,和点,,,中的两个点为顶点的四边形为平行四边形,且线段为平行四边形的一边,求的值.(2)若以点,和点,,,中的两个点为顶点的四边形为菱形,且线段为菱形的一条对角线,请直接写出的值.15、(8分)因式分解:(1);(2).16、(8分)如图,在△ABC中,AB=AC,∠BAC=120°,E为BC上一点,以CE为直径作⊙O恰好经过A、C两点,PF⊥BC交BC于点G,交AC于点F.(1)求证:AB是⊙O的切线;(2)如果CF=2,CP=3,求⊙O的直径EC.17、(10分)小华思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小华进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图1.此时她证明了AE=AF,请你证明;(1)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.18、(10分)又到一年丰收季,重庆外国语学校“国内中考、高考、国内保送、出国留学”捷报频传.作为准初三的初二年级学生希望抓紧暑期更好的提升自我.张同学采用随机抽样的方式对初二年级学生此次暑期生活的主要计划进行了问卷调查,并将调查结果按照“A社会实践类、B学习提高类、C游艺娱乐类、D其他”进行了分类统计,并绘制了如图1和如图2两幅不完整的统计图.(接受调查的每名同学只能在四类中选择其中一种类型,不可多选或不选.)请根据图中提供的信息完成以下问题.(1)扇形统计图中表示B类的扇形的圆心角是度,并补全条形统计图;(2)张同学已从被调查的同学中确定了甲、乙、丙、丁四名同学进行开学后的经验交流,并计划在这四人中选出两人的宝贵经验刊登在本班班刊上.请利用画树状图或列表的方法求出甲同学的经验刊登在班刊上的概率.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=DM,HN=2NE,HC与NM的延长线交于点P,则PC的值为_____.20、(4分)如图,在▱ABCD中,,在边AD上取点E,使,则等于______度.21、(4分)数据﹣2、﹣1、0、1、2的方差是_____.22、(4分)已知直线与直线平行,那么_______.23、(4分)甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:甲乙丙丁方差则四个人中成绩最稳定的是______.二、解答题(本大题共3个小题,共30分)24、(8分)某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.第1次第2次第3次第4次第5次王同学60751009075李同学70901008080根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差王同学807575190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.25、(10分)如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.26、(12分)在正方形中,过点A引射线,交边于点H(H不与点D重合).通过翻折,使点B落在射线上的点G处,折痕交于E,连接E,G并延长交于F.(1)如图1,当点H与点C重合时,与的大小关系是_________;是____________三角形.(2)如图2,当点H为边上任意一点时(点H与点C不重合).连接,猜想与的大小关系,并证明你的结论.(3)在图2,当,时,求的面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.【详解】解:∵四边形AGFE为矩形,

∴∠GAE=90°,∠EAB=90°;

由题意,△AEF绕点A旋转得到△ABC,

∴AF=AC;∠FAE=∠CAB,

∴∠FAC=∠EAB=90°,

∴△ACF是等腰直角三角形.

故选:D.本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.2、A【解析】解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,故选A.3、B【解析】

根据题意画出图形,由四边形EFGH是菱形,点E,F,G,H分别是边AD,AB,BC,CD的中点,利用三角形中位线的性质与菱形的性质,即可判定原四边形一定是对角线相等的四边形.【详解】解:∵点E,F,G,H分别是边AD,AB,BC,CD的中点,∴EH∥AC,EH=AC,FG∥AC,FG=AC,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,根据题意得:四边形EFGH是菱形,∴EF=EH,∴AC=BD,∴原四边形一定是对角线相等的四边形.故选:B.本题考查的是中点四边形、菱形的判定,掌握三角形中位线定理、菱形的判定定理是解题的关键.4、C【解析】试题解析:根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.5、C【解析】

利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边=122所以,斜边上的中线长=12×13=6.1故选:C.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6、C【解析】

求出∆=b2+8a,根据b2+8a的取值情况解答即可.【详解】∵,∴,∴∆=b2+8a,A.∵a>0,∴b2+8a>0,∴方程一定有两个相等的实数根,故A、B错误;C.当a<0,但b2+8a≥0时,方程有实根,故C正确,D错误.故选C.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.7、A【解析】

先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【详解】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=1.故选:A.本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8、B【解析】

利用矩形的判定定理、平行四边形的判定定理、菱形的判定定理及正方形的判定定理分别判断后即可确定正确的选项.【详解】解:①一组对边平行,一组对边相等的四边形,可能是等腰梯形;故①错误;②对角线互相平分且相等的四边形是矩形;故②正确;③对角线互相垂直平分的四边形是菱形;故③错误;④对角线互相垂直平分且相等的四边形是正方形,故④正确;综上所述:②④正确,正确的个数有2个.故选:.本题考查了矩形的判定、平行四边形的判定、菱形的判定及正方形的判定,解题的关键是能够熟练掌握有关的判定定理,难度不大.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.【详解】∵,

∴,去分母得:,解得:经检验是原方程的解.故答案为.本题除了定义运算外,还考查简单的分式方程的解法.10、30°【解析】

解:∵四边形ABCD是矩形,

∴∠B=90°,

∵E为边AB的中点,

∴AE=BE,

由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,

∴AE=FE,

∴∠EFA=∠EAF=75°,

∴∠BEF=∠EAF+∠EFA=150°,

∴∠CEB=∠FEC=75°,

∴∠FCE=∠BCE=90°-75°=15°,

∴∠BCF=30°,

故答案为30°.本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.11、0.1【解析】

大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1.本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.12、15.【解析】

中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.【详解】解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.故答案为:15本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).13、【解析】

求出形变前正方形的面积,形变后菱形的面积,两面积之比=菱形的“形变度”,求△AEF的面积,根据两面积之比=菱形的“形变度”,即可解答.【详解】如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:∴菱形形变前的面积与形变后的面积之比:∵这个菱形的“形变度”为2:,∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,∵若这个菱形的“形变度”k=,∴即∴S△A′E′F′=.故答案为:.考查菱形的性质,读懂题目中菱形的“形变度”的概念是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)当t=或4时,线段为平行四边形的一边;(2)v的值是2或1【解析】

(1)由线段为平行四边形的一边分两种情况,利用平行四边形的性质对边相等建立方程求解即可得到结论;(2)由线段为菱形的一条对角线,用菱形的性质建立方程求解即可求出速度.【详解】(1)由线段为平行四边形的一边,分两种情况:①当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB是平行四边形,此时t=22-3t,解得t=;②当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD是平行四边形,此时16-t=3t,解得t=4;综上,当t=或4时,线段为平行四边形的一边;(2)在Rt△ABP中,,AP=t∴,当PD=BQ=BP时,四边形PBQD是菱形,∴,解得∴当t=6,点Q的速度是每秒2个单位时四边形PBQD是菱形;在Rt△ABQ中,,BQ=22-vt,∴,当AP=AQ=CQ时,四边形AQPC是菱形,∴,解得,∴当t=,点Q的速度是每秒1个单位时四边形AQPC是菱形,综上,v的值是2或1.此题考查图形与动点问题,平行四边形的性质,菱形的性质,勾股定理,正确理解图形的形状及性质是解题的关键.15、(1);(2)【解析】

(1)先提取公因式-x,再用完全平方公式分解即可;(2)先提取公因式3x,再用完全平方公式分解即可.【详解】解:(1)==;(2)==本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16、(1)见解析;(2)⊙O的直径EC=1.【解析】

(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.

(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.【详解】证明:(1)连接AO,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=10°,∵AO=CO,∴∠0AC=∠OCA=10°,∴∠BAO=120°-10°=90°,∵OA是半径∴AB是⊙O的切线;(2)解:连接OP,∵PF⊥BC,∴∠FGC=∠EGP=90°,∵CF=2,∠FCG=10°,∴FG=1,∴在Rt△FGC中CG=∵CP=1.∴Rt△GPC中,PG=设OG=x,则OC=x+,连接OP,,显然OP=OC=x+在Rt△OPG中,由勾股定理知即(x+)2=x2+()2∴x.∴⊙O的直径EC=EG+CG=2x++=1.故答案为:(1)见解析;(2)⊙O的直径EC=1.本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.17、(1)见解析;(1)见解析;(3).【解析】

(1)根据四边形ABCD是菱形,首先证明∠B=∠D,AB=AD,再结合题意证明,进而证明△AEB≌△AFD,即可证明AE=AF.(1)根据(1)的证明,再证明△AEP≌△AFQ(ASA),进而证明AP=AQ.(3)根据题意连接AC,则可证明△ABC为等边三角形,再计算AE的长度,则可计算长APCQ的周长的最小值.【详解】(1)证明:如图1,∵四边形ABCD是菱形,∴∠B+∠C=180°,∠B=∠D,AB=AD,∵∠EAF=∠B,∴∠EAF+∠C=180°,∴∠AEC+∠AFC=180°,∵AE⊥BC,∴AF⊥CD,在△AEB和△AFD中,,∴△AEB≌△AFD(AAS),∴AE=AF;(1)证明:如图3,由(1)得,∠PAQ=∠EAF=∠B,AE=AF,∴∠EAP=∠FAQ,在△AEP和△AFQ中,,∴△AEP≌△AFQ(ASA),∴AP=AQ;(3)解:如图2,连接AC,∵∠ABC=60°,BA=BC=2,∴△ABC为等边三角形,∵AE⊥BC,∴BE=EC=1,同理,CF=FD=1,∴AE==1,∴四边形APCQ的周长=AP+PC+CQ+AQ=1AP+CP+CF+FQ=1AP+1CF,∵CF是定值,当AP最小时,四边形APCQ的周长最小,∴当AP=AE时,四边形APCQ的周长最小,此时四边形APCQ的周长的最小值=1×1+2=2+2.本题主要考查菱形的性质,关键在于第三问中的最小值的计算,要使周长最小,当AP=AE时,四边形APCQ的周长最小.18、(1)144(2)【解析】

(1)先根据A类型人数及其所占百分比求得总人数,继而根据各类型人数之和等于总人数求得B的人数,再用360°乘以B类型人数所占比例可得;(2)列表得出所有等可能结果,从中找打符合条件的结果数,再利用概率公式可得答案.【详解】解:(1)∵被调查的人数为45÷30%=150人,∴B等级人数为150﹣(45+15+30)=60人,则扇形统计图中表示B类的扇形的圆心角是360°×=144°,补全图形如下:故答案为144;(2)列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由树状图(或表格)可知,所有等可能的结果共12种,其中包含甲同学的有6种,所以P(甲同学的经验刊登在班刊上的概率)=.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

根据已知首先求出MC=1,HN=2,再利用平行线分线段成比例定理得到,进而得出PH=6,所以PC=PH-CH=1.【详解】解:∵正方体的棱长为1,点M,N分别在CD,HE上,CM=DM,HN=2NE,

∴MC=1,HN=2,

∵DC∥EH,

∴,

∵HC=1,

∴PC=1,

∴PH=6,

∴PC=PH-CH=1.

故答案为:1.本题考查了平行线分线段成比例定理等知识,根据已知得出PH的长是解决问题的关键.20、1【解析】

利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【详解】在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD=×(180°-50°)=1°,∴∠ECB=130°-1°=1°.故答案为1.本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.21、2【解析】

根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【详解】由题意可得,这组数据的平均数是:x==0,∴这组数据的方差是:,故答案为:2.此题考查方差,解题关键在于掌握运算法则22、1【解析】

两直线平行,则两比例系数相等,据此可以求解.【详解】解:直线与直线平行,,故答案为:1.本题考查了两条直线相交或平行问题,解题的关键是熟知两直线平行时两比例系数相等.23、甲【解析】

根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【详解】解:,四个人中成绩最稳定的是甲.故答案为:甲.此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、解答题(本大题共3个小题,共30分)24、(1)848080104;(2)小李.小王的优秀率为40%.小李的优秀率为80%;(3)小李,理由见解析【解析】试题分析:(1)根据平均数、中位数、众数、方差的概念即公式即可得出答案;(2)根据方差的意义即方差反映数据的波动程度,得出方差越小越稳定,应此小李的成绩稳定;根据表中的数据分别计算优秀率即可;(3)因为小李的成绩比小王的成绩稳定,且优秀率比小王的高,因此选小李参加比赛比较合适.试题解析:(1)84,8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论