版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【公众号:该学习了】7.4二项分布与超几何分布考法一二项分布【例1】(2024上·安徽合肥·高三合肥一六八中学校联考期末)甲、乙两人进行射击比赛,每次比赛中,甲、乙各射击一次,甲、乙每次至少射中8环.根据统计资料可知,甲击中8环、9环、10环的概率分别为,乙击中8环、9环、10环的概率分别为,且甲、乙两人射击相互独立.(1)在一场比赛中,求乙击中的环数少于甲击中的环数的概率;(2)若独立进行三场比赛,其中X场比赛中甲击中的环数多于乙击中的环数,求的分布列与数学期望.【一隅三反】1.(2024·内蒙古赤峰)已知某单位招聘程序分两步:第一步是笔试,笔试合格才能进入第二步面试;面试合格才算通过该单位的招聘.现有,,三位毕业生应聘该单位,假设,,三位毕业生笔试合格的概率分别是,,;面试合格的概率分别是,,.(1)求,两位毕业生中有且只有一位通过招聘的概率;(2)记随机变量为,,三位毕业生中通过招聘的人数,求的分布列与数学期望.2.(2024上·内蒙古鄂尔多斯)为了检查工厂生产的某产品的质量指标,随机抽取了部分产品进行检测,所得数据统计如下图所示.(注:产品质量指标达到130及以上为优质品);(1)求的值以及这批产品的优质率;(2)以本次抽检的频率作为概率,从工厂生产的所有产品中随机抽出件,记这件中优质产品的件数为,求的分布列与数学期望.考法二超几何分布【例2】(2023上·内蒙古呼伦贝尔)已知盒子内有大小相同的10个球,其中红球有个,已知从盒子中任取2个球都是红球的概率为.(1)求的值;(2)现从盒子中任取3个球,记取出的球中红球的个数为,求的分布列和数学期望.【一隅三反】1.(2023·全国·高三专题练习)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,表示选取的人中来自该中学的人数,求的分布列和数学期望.2.(2023上·江苏南通·高三海门中学校考阶段练习)某班为了庆祝我国传统节日中秋节,设计了一个小游戏:在一个不透明箱中装有4个黑球,3个红球,1个黄球,这些球除颜色外完全相同.每位学生从中一次随机摸出3个球,观察颜色后放回.若摸出的球中有个红球,则分得个月饼;若摸出的球中有黄球,则需要表演一个节目.(1)求一学生既分得月饼又要表演节目的概率;(2)求每位学生分得月饼数的概率分布和数学期望.3.(2023·陕西商洛·陕西省丹凤中学校考模拟预测)某乒乓球队训练教官为了检验学员某项技能的水平,随机抽取100名学员进行测试,并根据该项技能的评价指标,按分成8组,得到如图所示的频率分布直方图.
(1)求a的值,并估计该项技能的评价指标的中位数(精确到0.1);(2)若采用分层抽样的方法从评价指标在和内的学员中随机抽取12名,再从这12名学员中随机抽取5名学员,记抽取到学员的该项技能的评价指标在内的学员人数为,求的分布列与数学期望.考法三二项分布与超几何分布的辨析【例3-1】(2023湖南)下列随机事件中的随机变量服从超几何分布的是()A.将一枚硬币连抛3次,记正面向上的次数为B.从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为C.某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为D.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为【例3-2】(2023上海)下列例子中随机变量服从二项分布的个数为()①某同学投篮的命中率为0.6,他10次投篮中命中的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数;③从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数;④有一批产品共有件,其中件为次品,采用不放回抽取方法,表示次抽取中出现次品的件数A.0 B.1 C.2 D.3【例3-3】(2024·天津)已知条件①采用无放回抽取:②采用有放回抽取,请在上述两个条件中任选一个,补充在下面问题中横线上并作答,选两个条件作答的以条件①评分.问题:在一个口袋中装有3个红球和4个白球,这些球除颜色外完全相同,若___________,从这7个球中随机抽取3个球,记取出的3个球中红球的个数为X,求随机变量X的分布列和期望.【一隅三反】1.(2024北京)(多选)下列随机变量中,服从超几何分布的有()A.在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为XB.从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数C.一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯的数为随机变量XD.从10名男生,5名女生中选3人参加植树活动,其中男生人数记为X2.(2023安徽)(多选)下列事件不是n重伯努利试验的是()A.运动员甲射击一次,“射中9环”与“射中8环”B.甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”C.甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”D.在相同的条件下,甲射击10次,5次击中目标3(2023上·陕西西安)某中学进行校庆知识竞赛,参赛的同学需要从10道题中随机抽取4道来回答.竞赛规则规定:每题回答正确得10分,回答不正确得分.(1)已知甲同学每题回答正确的概率均为0.5,且各题回答正确与否之间没有影响,记甲的总得分为,求的期望和方差;(2)已知乙同学能正确回答10道题中的6道,记乙的总得分为,求的分布列.4(2023云南)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图如图.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.考法四二项分布与超几何分布随机变量概率最值【例4-1】(2024上·北京丰台)2023年冬,甲型流感病毒来势汹汹.某科研小组经过研究发现,患病者与未患病者的某项医学指标有明显差异.在某地的两类人群中各随机抽取20人的该项医学指标作为样本,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值,将该指标小于的人判定为阳性,大于或等于的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为.假设数据在组内均匀分布,用频率估计概率.(1)当临界值时,求漏诊率和误诊率;(2)从指标在区间样本中随机抽取2人,记随机变量为未患病者的人数,求的分布列和数学期望;(3)在该地患病者占全部人口的5%的情况下,记为该地诊断结果不符合真实情况的概率.当时,直接写出使得取最小值时的的值.【例4-2】(2024上·河南漯河)为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯月用电范围(度)某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124214215220225420430(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算某居民用电户用电450度时应交电费多少元?(2)现要从这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,记取到第一阶梯电量的户数为,当时对应的概率为,求取得最大值时的值.【一隅三反】1.(2024·全国·模拟预测)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为,收到0的概率为;发送1时,收到0的概率为,收到1的概率为.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).(1)当时,若发送0,则要得到正确信号,试比较单次传输和三次传输方案的概率大小;(2)若采用三次传输方案发送1,记收到的信号中出现2次信号1的概率为,出现3次信号1的概率为,求的最大值.2.(2024上·陕西西安·高二西安市铁一中学校考期末)某种植户对一块地的个坑进行播种,每个坑播粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立,对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.(1)从个坑中选两个坑进行观察,两坑不能相邻,有多少种方案?(2)对于单独一个坑,需要补播种的概率是多少?(3)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?3.(2024上·北京昌平)某汽车生产企业对一款新上市的新能源汽车进行了市场调研,统计该款车车主对所购汽车性能的评分,将数据分成5组:,并整理得到如下频率分布直方图:(1)求的值;(2)该汽车生产企业在购买这款车的车主中任选3人,对评分低于110分的车主送价值3000元的售后服务项目,对评分不低于110分的车主送价值2000元的售后服务项目.若为这3人提供的售后服务项目总价值为元,求的分布列和数学期望;(3)用随机抽样的方法从购买这款车的车主中抽取10人,设这10人中评分不低于110分的人数为,问为何值时,的值最大?(结论不要求证明考法五二项分布与超几何分布与其他知识的综合【例5】(2024上·山东日照·高二统考期末)普法宣传教育是依法治国、建设法治社会的重要内容,也是构建社会主义和谐社会的应有之意.为加强对学生的普法教育,某校将举办一次普法知识竞赛,共进行5轮比赛,每轮比赛结果互不影响.比赛规则如下:题库中有法律文书题和案例分析题两类问题,每道题满分10分.每一轮比赛中,参赛者在30分钟内完成法律文书题和案例分析题各2道,若有不少于3道题得分超过8分,将获得“优胜奖”,5轮比赛中,至少获得4次“优胜奖”的同学将进入决赛.甲同学经历多次限时模拟训练,指导老师从训练题库中随机抽取法律文书题和案例分析题各5道,其中有4道法律文书题和3道案例分析题得分超过8分.(1)从这10道题目中,随机抽取法律文书题和案例分析题各2道,求该同学在一轮比赛中获“优胜奖”的概率;(2)将上述两类题目得分超过8分的频率作为概率.为提高甲同学的参赛成绩,指导老师对该同学进行赛前强化训练,使得法律文书题和案例分析题得分超过8分的概率共增加了,以获得“优胜奖”的次数期望为参考,试预测该同学能否进入决赛.【一隅三反】1.(2023下·江西赣州·高二校联考阶段练习)(多选)在等差数列中,.现从数列的前10项中随机抽取3个不同的数,记取出的数为正数的个数为.则下列结论正确的是(
)A.服从二项分布 B.服从超几何分布C. D.2.(2024·江苏)某学校有甲,乙两个餐厅,经统计发现,前一天选择餐厅甲就餐第二天仍选择餐厅甲就餐的概率为,第二天选择餐厅乙就餐的概率为;前一天选择餐厅乙就餐第二天仍选择餐厅乙就餐的概率为,第二天选择餐厅甲就餐的概率为.若学生第一天选择餐厅甲就餐的概率是,选择餐厅乙就餐的概率是,记某同学第天选择餐厅甲就餐的概率为.(1)记某班3位同学第二天选择餐厅甲的人数为,求随机变量的分布列及期望;(2)学校为缓解就餐压力,决定每天从各年级抽调21人到甲乙两个餐厅参加志愿服务,请求出的通项公式,根据以上数据合理分配甲,乙两个餐厅志愿者人数,并说明理由.3.(2024·山西吕梁)吕梁市举办中式厨师技能大赛,大赛分初赛和决赛,初赛共进行3轮比赛,每轮比赛结果互不影响.比赛规则如下:每一轮比赛,参赛选手要在规定的时间和范围内,制作中式面点和中式热菜各2道,若有不少于3道得到评委认可,将获得一张通关卡,3轮比赛中,至少获得2张通关卡的选手将进入决赛.为能进入决赛,小李赛前在师傅的指导下多次进行训练,师傅从小李训练中所做的菜品中随机抽取了中式面点和中式热菜各4道,其中有3道中式面点和2道中式热菜得到认可.(1)若从小李训练中所抽取的8道菜品中,随机抽取中式面点、中式热菜各2道,由此来估计小李在一轮比赛中的通关情况,试预测小李在一轮比赛中通关的概率;(2)若以小李训练中所抽取的8道菜品中两类菜品各自被师傅认可的频率作为该类菜品被评委认可的概率,经师傅对小李进行强化训练后,每道中式面点被评委认可的概率不变,每道中式热菜被评委认可的概率增加了,以获得通关卡次数的期望作为判断依据,试预测小李能否进入决赛?4.(2024·黑龙江哈尔滨)这个冬季,哈尔滨文旅持续火爆,喜迎大批游客,冬天里哈尔滨雪花纷飞,成为无数南方人向往的旅游胜地,这里的美景,美食,文化和人情都让人流连忘返,严寒冰雪与热情服务碰撞出火花,吸引海内外游客纷至沓来.据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中的游客计划只游览冰雪大世界,另外的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为X,求X的分布列及数学期望;(2)记n个游客得到文旅纪念品的总个数恰为个的概率为,求的前n项和;(3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为n个的概率为,当取最大值时,求n的值.单选题1.(2024下·山东东营)随机变量服从二项分布:,则它的期望(
)A.0.5 B.2.5 C.5 D.102.(2023上·广东深圳·高二校考期末)若100件产品中包含10件次品,有放回地随机抽取6件,下列说法正确的是(
)A.其中的次品数服从超几何分布B.其中的正品数服从二项分布C.其中的次品数的期望是1D.其中的正品数的期望是53.(2024上·广西桂林·高二统考期末)已知在件产品中有件次品,现从这件产品中任取件,用表示取得次品的件数,则(
)A. B. C. D.4.(2023下·宁夏石嘴山·高二石嘴山市第三中学校考期末)在10件工艺品中,有3件二等品,7件一等品,现从中抽取5件,则抽得二等品件数X的数学期望为(
).A.2 B.4 C. D.5.(2024上·广东深圳)一袋中装有大小、质地均相同的5个白球,3个黄球和2个黑球,从中任取3个球,则至少含有一个黑球的概率是(
)A. B. C. D.6.(2021上·高二课时练习)一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②X表示取出的最小号码;③X表示取出的白球个数;④取出一个黑球记2分,取出一个白球记1分,X表示取出的4个球的总得分减去4的差.这四种变量中服从超几何分布的是()A.①② B.③④C.①②④ D.①②③④7.(2023下·上海浦东新·高二上海市建平中学校考期末)经检测一批产品中每件产品的合格率为,现从这批产品中任取5件,设取得合格产品的件数为,则以下选项正确的是(
)A.的可能取值为1,2,3,4,5 B.C.的概率最大 D.服从超几何分布8.(2024上·河南·高二校联考期末)一个不透明的袋子有10个除颜色不同外,大小、质地完全相同的球,其中有6个黑球,4个白球.现进行如下两个试验,试验一:逐个不放回地随机摸出3个球,记取到白球的个数为,期望和方差分别为;试验二:逐个有放回地随机摸出3个球,记取到白球的个数为,期望和方差分别为.则下列判断正确的是(
)A. B.C. D.多选题9.(2024上·江西上饶·高二统考期末)若随机变量,下列说法中正确的有(
)A. B.期望C.期望 D.方差10.(2023上·高二课时练习)在一个袋中装有质地、大小均一样的6个黑球,4个白球,现从中任取4个小球,设取出的4个小球中白球的个数为X,则下列结论正确的是(
)A.B.随机变量X服从二项分布C.随机变量X服从超几何分布D.11.(2024上·辽宁抚顺·高二校联考期末)已知,且,则(
)A. B.C. D.11.(2024上·河南南阳·高二南阳市第五中学校校联考期末)在一个袋中装有除颜色外其余完全一样的3个黑球,3个白球,现从中任取4个球,设这4个球中黑球的个数为,则(
)A.服从二项分布 B.的值最小为1C. D.127.(2023上·重庆·高三重庆八中校考阶段练习)在数字通信中,信号是由数字“”和“”组成的序列.现连续发射信号次,每次发射信号“”的概率均为.记发射信号“1”的次数为,记为奇数的概率为,为偶数的概率为,则下列说法中正确的有(
)A.当,时,B.时,有C.当,时,当且仅当时概率最大D.时,随着的增大而增大填空题13.(2024上·江西南昌·高二江西师大附中校考期末)在一个布袋中装有除颜色外完全相同的3个白球和m个黑球,从中随机摸取1个球,有放回地摸取3次,记摸取白球的个数为X.若,则.14.(2023·陕西西安·西安市长安区第二中学校联考模拟预测)若随机变量,且,则.15.(2024上·辽宁·高二校联考期末)某班要从3名男同学和5名女同学中随机选出4人去参加某项比赛,设抽取的4人中女同学的人数为,则.16.(2023上·山东德州·高二校考阶段练习)如图是一块高尔顿板的示意图.在一块木板上钉着若干排相互平行但错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落过程中,每次碰到小木钉后可能向左或向右落下,其中向左落下的概率为,向右下落的概率为,最后落入底部的格子中.格子从左到右分别编号为,,,,,则小球落入号格子的概率最大.图片仅供参考解答题17.(2024下·北京海淀·高三101中学校考开学考试)“双减”政策执行以来,中学生有更多的时间参加志愿服务和体育锻炼等课后活动.某校为了解学生课后活动的情况,从全校学生中随机选取100人,统计了他们一周参加课后活动的时间(单位:小时),分别位于区间,用频率分布直方图表示如下:假设用频率估计概率,且每个学生参加课后活动的时间相互独立.(1)估计全校学生一周参加课后活动的时间位于区间的概率;(2)从全校学生中随机选取3人,记表示这3人一周参加课后活动的时间在区间的人数,求的分布列和数学期望;(3)设全校学生一周参加课后活动的时间的中位数估计值为、平均数的估计值为(计算平均数时,同组中的每个数据都用该组区间的中点值代替),请直接写出的大小关系.18.(2024·全国·模拟预测)为增强体质,锤炼意志,让学生享受运动乐趣,享受校园生活,某学校举办全员运动会.该校高三某班的同学报名参加游泳比赛、田径比赛、球类比赛这三类比赛(每人必须报名参加比赛且只能报一类),其中报名参加游泳比赛、田径比赛、球类比赛的人数占本班人数的比例依次为(其中).现从该班学生中任选3人,以频率估计概率.(1)若被选取的3人参加比赛的类别互不相同的概率为,求a的值;(2)记X为选取的3人中报名参加田径比赛和报名参加球类比赛的总人数,求X的分布列和数学期望.19.(2023·全国·模拟预测)为庆祝中国共产党成立周年,某市开展了党史知识竞赛活动,竞赛结束后,为了解本次竞赛的成绩情况,从所有参赛学生中随机抽取了名学生的竞赛成绩作为样本,数据整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东江门幼儿师范高等专科学校《基础英语二》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《陈设设计》2023-2024学年第一学期期末试卷
- 二氧化碳制备课件
- 《如何赢得合作》课件
- 赣州职业技术学院《工程计量与计价》2023-2024学年第一学期期末试卷
- 2024“五史”全文课件
- 小学生手工剪纸课件
- 赣南卫生健康职业学院《汉语言文学专业概论》2023-2024学年第一学期期末试卷
- 赣南科技学院《燃烧学B》2023-2024学年第一学期期末试卷
- 《保护煤柱的设计》课件
- 奥齿泰-工具盒使用精讲讲解学习课件
- 最新MARSI-医用黏胶相关皮肤损伤课件
- 工程开工报审表范本
- 航空小镇主题乐园项目规划设计方案
- 保洁冬季防滑防冻工作措施
- 少儿美术课件-《我的情绪小怪兽》
- 永续债计入权益的必备条件分析
- 预应力钢绞线张拉伸长量计算程序单端(自动版)
- 基坑监测课件ppt版(共155页)
- 开发区开发管理模式及发展要素PPT课件
- 急诊科科主任述职报告范文
评论
0/150
提交评论