2024年河北省保定市冀英学校九上数学开学学业质量监测模拟试题【含答案】_第1页
2024年河北省保定市冀英学校九上数学开学学业质量监测模拟试题【含答案】_第2页
2024年河北省保定市冀英学校九上数学开学学业质量监测模拟试题【含答案】_第3页
2024年河北省保定市冀英学校九上数学开学学业质量监测模拟试题【含答案】_第4页
2024年河北省保定市冀英学校九上数学开学学业质量监测模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共4页2024年河北省保定市冀英学校九上数学开学学业质量监测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知不等式的解集是,下列各图中有可能是函数的图象的是()A. B.C. D.2、(4分)下列方程中是一元二次方程的是()A.2x+1=0 B.x2+y=1 C.x2+2=0 D.3、(4分)已知x=1是一元二次方程x2+bx+1=0的解,则b的值为(A.0 B.1 C.-2 D.24、(4分)公式表示当重力为P时的物体作用在弹簧上时弹簧的长度.表示弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P5、(4分)若ab>0,ac<0,则一次函数的图象不经过下列个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限6、(4分)使二次根式有意义的x的取值范围为A.x≤2B.x≠-2C.x≥-2D.x<27、(4分)二次根式在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣28、(4分)下列图形中既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.正五边形 D.正十边形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)化简:______.10、(4分)不等式组的解集是x>4,那么m的取值范围是_____.11、(4分)画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.12、(4分)如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.13、(4分)若关于x的方程-3有增根,则a=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式.(2)根据函数图象,直接写出y<2时x的取值范围.15、(8分)作图题.小峰一边哼着歌“我是一条鱼,快乐的游来游去”,一边试着在平面直角坐标系中画出了一条鱼.如图,O(0,0),A(5,4),B(3,0),C(5,1),D(5,-1),E(4,-2).(1)作“小鱼”关于原点O的对称图形,其中点O,A,B,C,D,E的对应点分别为O1,A1,B1,C1,D1,E1(不要求写作法);(2)写出点A1,E1的坐标.16、(8分)如图1,以直线MN上的线段BC为边作正方形ABCD,CH平分∠DCN,点E为射线BN上一点,连接AE,过点E作AE的垂线交射线CH于点F,探索AE与EF的数量关系。(1)阅读下面的解答过程。并按此思路完成余下的证明过程当点E在线段BC上,且点E为BC中点时,AB=EF理由如下:取AB中点P,達接PE在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴△BPE等腰三角形,AP=BC∴∠BPB=45°∴∠APBE=135°又因为CH平分∠DCN∴∠DCF=45°∴∠ECF=135°∴∠APE=∠ECF余下正明过程是:(2)当点E为线段AB上任意一点时,如图2,结论“AE=EF”是否成立,如果成立,请给出证明过程;(3)当点E在BC的延长线时,如图3,结论“AE=EF”是否仍然成立,如果成立,请在图3中画出必要的辅助线(不必说明理由)。17、(10分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?18、(10分)与位似,且,画出位似中心,并写出与的位似比.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.20、(4分)如图1,长为60km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B、A后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站A的路程分别为y甲,y乙(km)行驶时间为t(h).(1)图2已画出y甲与t的函数图象,其中a=,b=,c=.(2)分别写出0≤t≤2及2<t≤4时,y乙与时间t之间的函数关系式.(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.21、(4分)分解因式:x2-9=_▲.22、(4分)如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.①第24天的销售量为200件;②第10天销售一件产品的利润是15元;③第12天与第30天这两天的日销售利润相等;④第30天的日销售利润是750元.23、(4分)若,则的取值范围是_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:x01234567891011y0.01.02.03.04.05.0要求:补全表格中相关数值(保留一位小数);(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP.25、(10分)已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.26、(12分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,ND=1.①求MC的长.②求MN的长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

不等式mx+n>0的解集为直线y=mx+n落在x轴上方的部分对应的x的取值范围是x>-2,根据图象判断即可求解.【详解】解:A、不等式mx+n>0的解集是x>-2,故选项正确;

B、不等式mx+n>0的解集是x<-2,故选项错误;

C、不等式mx+n>0的解集是x>2,故选项错误;

D、不等式mx+n>0的解集是x<2,故选项错误.

故选:A.本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=mx+n的值大于0的自变量x的取值范围.2、C【解析】

本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.由这两个条件得到相应的关系式,再求解即可.【详解】A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选C.本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).3、C【解析】

根据一元二次方程解的定义,把x=1代入x1+bx+1=0得关于b的一次方程,然后解一次方程即可.【详解】解:把x=1代入x1+bx+1=0得1+b+1=0,解得b=-1.

故选:C.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4、A【解析】试题分析:A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬;故选A考点:一次函数的应用5、C【解析】

根据ab>0,ac<0,可以得到a、b、c的正负,从而可以判断一次函数的图象经过哪几个象限,不经过哪个象限,本题得以解决.【详解】解:∵ab>0,ac<0,∴当a>0时,b>0,c<0,当a<0时,b<0,c>0,∴当a>0时,b>0,c<0时,一次函数的图象经过第一、二、四象限,不经过第三象限,当a<0时,b<0,c>0时,一次函数的图象经过第一、二、四象限,不经过第三象限,由上可得,一次函数的图象不经过第三象限,故选:C.本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6、C【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,,故选C.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.7、B【解析】

分析已知和所求,要使二次根式在实数范围内有意义,则其被开方数大于等于0;易得a+1≥0,解不等式a+1≥0,即得答案.【详解】解:∵二次根式在实数范围内有意义,∴a+1≥0,解得a≥-1.故选B.本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;8、D【解析】

根据轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;

B、不是轴对称图形,是中心对称图形.故错误;

C、是轴对称图形,不是中心对称图形.故错误;

D、是轴对称图形,也是中心对称图形.故正确.故选:D.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据二次根式的性质化简即可.【详解】.故答案为.本题考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.10、m≤1【解析】

根据不等式组解集的求法解答.求不等式组的解集.【详解】不等式组的解集是x>1,得:m≤1.故答案为m≤1.本题考查了不等式组解集,求不等式组的解集,解题的关键是注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11、640【解析】

首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.【详解】解:设这个零件的实际长是xcm,根据题意得:,解得:x=640,则这个零件的实际长是640cm.故答案为:640此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.12、>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.13、1【解析】

去分母后把x=2代入,即可求出a的值.【详解】两边都乘以x-2,得a=x-1,∵方程有增根,∴x-2=0,∴x=2,∴a=2-1=1.故答案为:1.本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.三、解答题(本大题共5个小题,共48分)14、(1)y=x+1;(1)x<1【解析】

(1)将(﹣1,0)、(1,1)两点代入y=kx+b,解得k,b,可得直线l的解析式;(1)根据函数图象可以直接得到答案.【详解】解:(1)将点(﹣1,0)、(1,1)分别代入y=kx+b,得:,解得.所以,该一次函数解析式为:y=x+1;(1)由图象可知,当y<1时x的取值范围是:x<1.故答案为(1)y=x+1;(1)x<1.本题主要考查了待定系数法求一次函数的解析式,利用代入法是解答此题的关键.15、(1)见解析;(2)A1(-5,-4),E1(-4,2).【解析】

(1)根据网格结构找出点O、A、B、C、D、E关于原点O的对称点O1、A1、B1、C1、D1、E1的位置,然后顺次连接即可;(2)根据平面直角坐标系中A1,E1的位置,直接写出点A1,E1的坐标即可.【详解】(1)如图所示:(2)由题意得:A1(-5,-4),E1(-4,2).本题主要考查中心对称变换,掌握网格结构准确找出点O、A、B、C、D、E关于原点O的对称点的位置是解题的关键.16、(1)见解析;(2)成立,理由见解析;(3)成立,图形见解析【解析】

(1)取AB中点P,连接PE,得出∠APE=∠ECF,再根据同角的余角相等得出∠BAE=∠CEF,进而得出ΔAPE≌ΔECF,求出结果;(2)在AB上截取BN=BE,类比(1)的证明方法即可得出结果;(3)在BA延长线上取一点Q,使BQ=BE,连接EQ,类比(1)的证明方法即可得出结果.【详解】(1)余下证明过程为:∵∠ABE=90°∴∠BAE+∠AEB=90°∵∠AEF=90°∴∠BAE=∠CEF∴ΔAPE≌ΔECF∴AE=EF.(2)成立证明:在AB上截取BN=BE在正方形ABCD中,∠B=∠BCD=90°,AB=BC∴ΔBNE为等腰三角形,AN=EC∴∠BNE=45°∴∠ANE=135°又因为GH平分∠DCN∴∠DCF=45°∴∠ECF=135°∴∠ANE=∠ECF由(1)得∠BAE+∠AEB=90°,∠AEB+∠CEF=90°∴∠BAE=∠CEF∴ΔANE≌ΔECF∴AE=EF(3)如图证明:在BA延长线上取一点Q,使BQ=BE,连接EQ,

在正方形ABCD中,

∵AB=BC,

∴AQ=CE.

∵∠B=90°,

∴∠Q=45°.

∵CH平分∠DCN,∠DCN=∠DCB=90°,

∴∠HCE=∠Q=45°.

∵AD∥BE,

∴∠DAE=∠AEB.

∵∠AEF=∠QAD=90°,

∴∠QAE=∠CEF.

∴△QAE≌△CEF.

∴AE=EF.本题是四边形综合题,主要考查了正方形的性质,全等三角形的性质和判定,平行线的性质,解题的关键是利用同角或等角的余角相等.17、(1)一名熟练工加工1件A型服装和1件B型服装各需要2小时和1小时;(2)该服装公司执行规定后违背了广告承诺.【解析】

(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时”,列出方程组,即可解答.

(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件.从而得到W=﹣10a+4000,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.【详解】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,由题意得:解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.

(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=20a+15(25×8﹣2a)+1000,∴W=﹣10a+4000,又∵解得:a≥50,∵﹣10<0,∴W随着a的增大则减小,∴当a=50时,W有最大值1.∵1<4000,∴该服装公司执行规定后违背了广告承诺.考查一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目,列出方程是解题的关键.18、作图见详解,位似比为1:1【解析】

连接BB′、CC′,它们的交点P为位似中心,根据位似的性质相似比等于位似比,所以计算AB与A′B′的值即可得到△ABC与△A′B′C′的位似比.【详解】解:如图,点P为位似中心.∵AB=1,A′B′=1,∴△ABC与△A′B′C′的位似比=AB:A′B′=1:1.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行或共线.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.【详解】解:∵四边形ABCD为平行四边形,

∴AO=OC,AD∥BC,

∴∠EAO=∠FCO,

在△AOE和△COF中,,

∴△AOE≌△COF,

∴OF=OE=1.5,CF=AE,

根据平行四边形的对边相等,得

CD=AB=4,AD=BC=5,

故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.

故答案为:1.本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.20、(1)a=3,b=2,c=1.y乙=3-30t(0≤t≤2)y乙=30t-3(2<t≤1).相遇次数为2.【解析】试题分析:(1)由函数图象的数据,根据行程问题的数量关系就可以求出结论;(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b;当2<t≤1时,设y乙与时间t之间的函数关系式为y乙=k1x+b1;由待定系数法就可以求出结论;(3)通过描点法画出函数图象即可.试题解析:(1)由题意,得a=3,b=2,c=1.故答案为:3,2,1;(2)当0≤t≤2时,设y乙与时间t之间的函数关系式为y乙=kx+b,由题意,得,解得:,∴y乙=-30t+3当2<t≤1时,设y乙与时间t之间的函数关系式为y乙=k1x+b1,由题意,得,解得:,∴y乙=30t-3.(3)列表为:t021y乙=-30t+3(0≤t≤2)30y乙=30t-3(2<t≤1)03描点并连线为:如图,由于两个图象有两个交点,所以在整个行驶过程中两车相遇次数为2.考点:一次函数的应用.21、(x+3)(x-3)【解析】

x2-9=(x+3)(x-3),故答案为(x+3)(x-3).22、①②④.【解析】

图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对①做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,对②做出判断,通过图1求出当0≤t≤24时,产品日销售量y与时间t的函数关系式,分别求出第12天和第30天的销售利润,对③④进行判断,最后综合各个选项得出答案.【详解】解:图1反应的是日销售量y与时间t之间的关系图象,过(24,200),因此①是正确的,

由图2可得:z=,当t=10时,z=15,因此②也是正确的,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=kt+b,

把(0,100),(24,200)代入得:,

解得:,

∴y=t+100(0≤t≤24),

当t=12时,y=150,z=-12+25=13,

∴第12天的日销售利润为;150×13=1950(元),第30天的销售利润为:150×5=750元,

因此③不正确,④正确,

故答案为:①②④.本题考查一次函数的应用,分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.23、a≤3【解析】

根据算术平方根的非负性,可以得到3-a≥0,即可求得a得取值范围.【详解】解:由表示算术平方根具有非负性,则3-a≥0,即a≤3.本题考查算平方根的性质,正确、灵活运用算术平方根的非负性是解答本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)见解析,5.0;4.1;(2)见解析;(3)2.5或9.1【解析】

(1)根据点P在第5秒与第9秒的位置,分别求出BP的长,即可得到答案;(2)根据表格中的x,y的对应值,描点、连线,画出函数图象,即可;(3)令CP=y′,确定P在BC和AC上时,得y′=-x+5或y′=x-5,画出图象,得到图象的交点的横坐标,即可求解.【详解】(1)当x=5时,点P与点C重合,y=5,当x=9时,点P在AC边上,且CP=9×1-5=4cm,过点B作BD⊥AC于点D,则CD=AC=3cm,BD=cm,∴DP=CP-CD=4-3=1cm,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论