版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2024-2025学年上海市虹口区名校数学九年级第一学期开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,将一个矩形纸片ABCD,沿着BE折叠,使C、D两点分别落在点、处若,则的度数为A. B. C. D.2、(4分)一次函数y=k-2x+3的图像如图所示,则k的取值范围是(A.k>3 B.k<3 C.k>2 D.k<23、(4分)点向右平移2个单位得到对应点,则点的坐标是()A. B. C. D.4、(4分)如图,在菱形ABCD中,AC、BD相交于点O,AC=8,BD=6,则菱形的边长等于()A.10 B.20 C. D.55、(4分)菱形ABCD的对角线AC,BD相交于点O,若AC=6,菱形的周长为20,则对角线BD的长为()A.4 B.8 C.10 D.126、(4分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形7、(4分)如图,若要用“”证明,则还需补充的条件是()A. B.或C.且 D.8、(4分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在菱形中,过点作交对角线于点,且,则_____.10、(4分)已知直线y=2x﹣5经过点A(a,1﹣a),则A点落在第_____象限.11、(4分)如图,在第个中,:在边取一点,延长到,使,得到第个;在边上取一点,延长到,使,得到第个,…按此做法继续下去,则第个三角形中以为顶点的底角度数是__________.12、(4分)不等式-->-1的正整数解是_____.13、(4分)一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知ABC,利用尺规在AC边上求作点D,使AD=BD(保留作图痕迹,不写作法)15、(8分)作平行四边形ABCD的高CE,B是AE的中点,如图.(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.(2)如果BE:CE=1:,BC=3cm,求AB.16、(8分)如图,矩形ABCD中,BC>AB,E是AD上一点,△ABE沿BE折叠,点A恰好落在线段CE上的点F处.(1)求证:CF=DE;(2)设=m.①若m=,试求∠ABE的度数;②设=k,试求m与k满足的关系式.17、(10分)如图①,在正方形中,点,分别在、上,且.(1)试探索线段、的关系,写出你的结论并说明理由;(2)连接、,分别取、、、的中点、、、,四边形是什么特殊平行四边形?请在图②中补全图形,并说明理由.18、(10分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当x=______时,分式的值为0.20、(4分)计算=_____________21、(4分)若二次根式有意义,则的取值范围是______.22、(4分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.23、(4分)一组数据为1,2,3,4,5,6,则这组数据的中位数是______.二、解答题(本大题共3个小题,共30分)24、(8分)先化简,再求值:,其中x=+1.25、(10分)在直角坐标平面里,梯形ABCD各顶点的位置如图所示,图中每个小正方形方格的边长为1个单位长度.(1)求梯形ABCD的面积;(2)如果把梯形ABCD在坐标平面里先向右平移1个单位,然后向下平移2个单位得到梯形A1B1C1D1,求新顶点A1,B1,C1,D1的坐标.26、(12分)已知:是一元二次方程的两实数根.(1)求的值;(2)求x1x2的值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
根据折叠前后对应角相等即可得出答案.【详解】解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.故选B.本题考核知识点:轴对称.解题关键点:理解折叠的意义.2、D【解析】
根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.3、A【解析】
根据平移的坐标变化规律,将A的横坐标+2即可得到A′的坐标.【详解】∵点A(1,2)向右平移2个单位得到对应点,∴点的坐标为(1+2,2),即(3,2).故选A.本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.4、D【解析】
根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】解:∵四边形ABCD是菱形,∵AC=8,BD=6,
∴OA=4,OB=3,即菱形ABCD的边长是1.
故选:D.本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记性质是解题的关键.5、B【解析】
利用菱形的性质根据勾股定理求得BO的长,然后求得BD的长即可.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=6,∴AO=3,∵周长为20,∴AB=5,由勾股定理得:BO=4,∴BD=8,故选:B.本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.6、D【解析】试题分析:A.平行四边形的对角线互相平分,说法正确;B.对角线互相平分的四边形是平行四边形,说法正确;C.菱形的对角线互相垂直,说法正确;D.对角线互相垂直的四边形是菱形,说法错误.故选D.考点:1.平行四边形的判定;2.菱形的判定.7、B【解析】
根据题意可知只要再有一条直角边对应相等即可通过“HL”证明三角形全等.【详解】解:已知△ABC与△ABD均为直角三角形,AB=AB,若或,则(HL).故选B.本题主要考查全等三角形的特殊判定,解此题的关键在于熟练掌握其知识点.8、B【解析】∵直角边AC=6cm、BC=8cm∴根据勾股定理可知:BA=√62+82=10∵A,B关于DE对称,∴BE=10÷2=5二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据菱形的性质与三角形的外角定理即可求解.【详解】∵四边形ABCD是菱形,故∠DBC=∠BDC,∵,∴∠BDC=∠ECD,∴∠BEC=∠BDC+∠ECD=2∠BDC=2∠DBC∵∴∠DBC+∠BEC=3∠DBC=90°,得∠DBC=30°,故∠BEC=90°-∠DBC=60°,故填60°.此题主要考查菱形的性质,解题的关键是熟知菱形的性质、等腰三角形的性质、三角形的外角定理.10、四.【解析】
把点A(a,1-a)代入直线y=2x-5求出a的值,进而可求出A点的坐标,再根据各象限内点的坐标特点判断出A点所在的象限即可.【详解】把点A(a,1−a)代入直线y=2x−5得,2a−5=1−a,解得a=2,故A点坐标为(2,−1),由A点的坐标可知,A点落在第四象限.故答案为:四.本题考查了一次函数图象上点的坐标特征,牢牢掌握一次函数图像上的坐标特征是解答本题的关键.11、.【解析】
先根据等腰三角形的性质求出的度数,再根据三角形外角的性质及等腰三角形的性质求出,及的度数.【详解】在中,,,,是的外角,,同理可得.故答案为:.本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出、及的度数.12、1,1【解析】
首先确定不等式的解集,然后再找出不等式的特殊解.【详解】解:解不等式得:x<3,故不等式的正整数解为:1,1.故答案为1,1.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.13、1【解析】由平均数的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;故答案是:1.三、解答题(本大题共5个小题,共48分)14、见解析【解析】
根据尺规作线段垂直平分线的作法,作出AB的垂直平分线与AC的交点,即可.【详解】如图所示:∴点D即为所求.本题主要考查线段的垂直平分线的尺规作图,熟练掌握线段的中垂线尺规作图的基本步骤,是解题的关键.15、(1)BD⊥AE,理由见解析;(2)(cm).【解析】
(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;(2)直接利用勾股定理得出BE的长,进而得出答案.【详解】解:(1)对,理由:∵ABCD是平行四边形,∴CD∥AB且CD=AB.又B是AE的中点,∴CD∥BE且CD=BE.∴BD∥CE,∵CE⊥AE,∴BD⊥AE;(2)设BE=x,则CE=x,在Rt△BEC中:x2+(x)2=9,解得:x=,故AB=BE=(cm).此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.16、(1)见解析;(1)①∠ABE=15°,②m1=1k﹣k1.【解析】
(1)通过折叠前后两个图像全等,然后证明△CED≌△BCF即可;(1)由题知AB=BF,BC=AD通过=,得出=,判断角度求解即可,由=m,=k的得出边之间的关系,在通过Rt△CED建立勾股定理方程化简即可求出【详解】(1)证明:由折叠的性质可知,∠BEA=∠BEF,∵AD∥BC,∴∠BEA=∠EBC,∴∠BEF=∠EBC,∴BC=CE;∵AB=BF=CD,△CED和△BCF都为直角三角形∴△CED≌△BCF∴CF=DE;(1)解:①由(1)得BC=CE∵BC=AD∴AD=CE∵AB=BF∴==∵BCF都为直角三角形∴∠FBC=60°∴∠ABE=②∵=k,=m,∴AE=kAD,AB=mAD,∴DE=AD﹣AE=AD(1﹣k),在Rt△CED中,CE1=CD1+DE1,即AD1=(mAD)1+[AD(1﹣k)]1,整理得,m1=1k﹣k1.本题主要是对特殊四边形的综合考察,熟练掌握四边形几何知识和用字母表示边的转换是解决本题的关键17、(1)AF=DE,AF⊥DE,理由见详解;(2)四边形HIJK是正方形,补图、理由见详解.【解析】
(1)根据已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE,∠BAF=∠ADE,再由直角三角形的两个锐角互余和有两个角互余的三角形是直角三角形可证得AF⊥DE.(2)根据已知可得HK,KJ,IJ,HI都是中位线,由全等三角形的判定可得到四边形四边都相等且有一个角是直角,从而来可得到该四边形是正方形.【详解】解:(1)AF=DE,AF⊥DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE,∠BAF=∠ADE.∵∠DAB=90°,∴∠BAF+∠DAF=90°,∴∠ADE+∠DAF=90°,∴AF⊥DE.∴AF=DE,AF⊥DE.(2)四边形HIJK是正方形.如下图,H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AOE=90°∴∠KHI=90°,∴四边形HIJK是正方形.此题主要考查正方形的判定的方法与性质和菱形的判定,及全等三角形的判定等知识点的综合运用.18、(1)见解析;(2)①7;②1.【解析】
(1)根据平行四边形的性质得出CF平行ED,再根据三角形的判定方法判定△CFG≌△EDG,从而得出FG=CG,根据平行四边形的判定定理,即可判断四边形CEDF为平行四边形.(2)①过A作AM⊥BC于M,根据直角三角形边角关系和平行四边形的性质得出DE=BM,根据三角形全等的判定方法判断△MBA≌△EDC,从而得出∠CED=∠AMB=90°,根据矩形的判定方法,即可证明四边形CEDF是矩形.②根据题意和等边三角形的性质可以判断出CE=DE,再根据菱形的判定方法,即可判断出四边形CEDF是菱形.【详解】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=1时,四边形CEDF是菱形,理由是:∵AD=10,AE=1,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:1.本题考查了平行四边形、矩形、菱形的判定方法,平行四边形的性质和三角形全等的判定和性质,解决本题的关键是正确理解题意,能够熟练掌握平行四边形、矩形、菱形的判定方法,找到各个量之间存在的关系.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】
直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式的值为0,
∴1x-4=0且x-1≠0,
解得:x=1.
故答案为:1.本题考查分式的值为零的条件,正确把握分式的定义是解题关键.20、3【解析】
根据零指数幂和负整数次幂的定义,化简计算即可得到答案.【详解】解:,故答案为:3.本题考查了零指数幂和负整数次幂的定义,解题的关键是正确进行化简.21、【解析】
根据二次根式有意义的条件即可求解.【详解】依题意得a+1≥0,解得故填:此题主要考查二次根式的定义,解题的关键是熟知被开方数为非负数.22、4.【解析】试题解析:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.考点:矩形的性质.23、3.5【解析】
将一组数据按大小依次排列,把处在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年洗车设备采购协议模板
- 2024年国际口译服务协议样例
- 2024年财务专家服务协议协议样本
- 2024年商场租赁终止协议详尽
- 2024年房产买卖协议模板
- 2024企业员工招聘协议样本
- 2024年协议解除正式声明文件
- 2024年建筑行业补充协议模板
- 丢失协议书补签作废法律效力确认书
- 3.5 共点力平衡(含答案) 2024-2025学年高一物理同步精讲义(人教版2019必修第一册)
- 中国历史朝代歌(课堂PPT)
- 现代大学英语精读 lessonProfessions for Women
- 199管理类联考综合写作答题纸完美版
- 二年级单脚起跳双脚落地
- 三方战略合作框架协议-中英文Co-operation-Agreement
- 志愿者应急事件处理(课堂PPT)
- 三相异步电动机正反转控制线路教学设计
- 旅行社派团单
- 拼音aoe四声(课堂PPT)
- 食材配送供应商评价表
- 岭南新天地调研报告
评论
0/150
提交评论