




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Thegoal:measuringtheintensityandphasevs.time(orfrequency)Theways:TheSpectrometerandMichelsonInterferometerScanningAutocorrelationSingle-shotautocorrelationTheAutocorrelationandSpectrumThird-orderAutocorrelationInterferometricAutocorrelationMeasuringUltrashortLaserPulsesI:AutocorrelationE(t)E(t–t)Inordertomeasureaneventintime,youneedashorterone.Tostudythisevent,youneedastrobelightpulsethat’sshorter.Butthen,tomeasurethestrobelightpulse,youneedadetectorwhoseresponsetimeisevenshorter.Andsoon…So,now,howdoyoumeasuretheshortestevent?PhotographtakenbyHaroldEdgerton,MITTheDilemmaTodeterminethetemporalresolutionofanexperimentusingit.Todeterminewhetheritcanbemadeevenshorter.Tobetterunderstandthelasersthatemitthemandtoverifymodelsofultrashortpulsegeneration.Tobetterstudymedia:thebetterweknowthelightinandlightout,thebetterweknowthemediumwestudywiththem.Tousepulsesofspecificintensityandphasevs.timetocontrolchemicalreactions:“Coherentcontrol.”Tounderstandpulse-shapingeffortsfortelecommunications,etc.Becauseit’sthere.Whymeasureanultrashortlaserpulse?Asamoleculedissociates,
itsemissionchangescolor(i.e.,thephasechanges),revealingmuchaboutthemoleculardynamics,notavail-ablefromthemerespectrum,oreventheintensityvs.time.ExcitationtoexcitedstateEmissionGroundstateExcitedstateExp’tTheoryLinearLinearornonlinearmediumMeasuringtheintensityandphaseofthepulsesintoandoutofamediumtellsusasmuchaspossibleaboutthelinearandnonlineareffectsinthemedium.StudyingMediabyMeasuringtheIntensityandPhaseofLightPulsesWithalinearmedium,welearnthemedium’sabsorptioncoefficientandrefractiveindexvs.
Withanonlinear-opticalmedium,wecanlearnaboutself-phasemodulation,forexample,forwhichthetheoryismuchmorecomplex.Indeed,theoreticalmodelscanbetested.Time(fs)IntensityPhaseNonlinearEaton,etal.,JQE35,451(1999).Time(fs)IntensityPhaseAlaserpulsehasthetime-domainelectricfield:EI(t)1/
2exp[iw0t–i
(t)]}IntensityPhase(t)=Re{Equivalently,vs.frequency:exp[-ij(w–w0)]}SpectralPhase(neglectingthenegative-frequencycomponent)E(w)=Re{~S(ww0)1/
2Wemustmeasureanultrashortlaserpulse’s
intensityandphasevs.timeorfrequency.SpectrumKnowledgeoftheintensityandphaseorthespectrumandspectralphaseissufficienttodeterminethepulse.
t
d
dtTheinstantaneousfrequency:Example:“Linearchirp”Phase,
(t)timetimeFrequency,w(t)timeWe’dliketobeabletomeasure,notonlylinearlychirpedpulses,butalsopulseswitharbitrarilycomplexphasesandfrequenciesvs.time.Thephasedeterminesthepulse’sfrequency
(i.e.,color)vs.time.Thespectrometermeasuresthespectrum,ofcourse.Wavelengthvariesacrossthecamera,andthespectrumcanbemeasuredforasinglepulse.PulseMeasurementintheFrequencyDomain:
TheSpectrometerCollimatingMirror“Czerny-Turner”arrangementEntranceSlitCameraorLinearDetectorArrayFocusingMirrorGrating“Imagingspectrometers”allowmanyspectratobemeasuredsimultaneously.Broad-bandpulsePulseMeasurementintheTimeDomain:DetectorsExamples:Photo-diodes,Photo-multipliersDetectorsaredevicesthatemitelectronsinresponsetophotons.Detectorshaveveryslowriseandfalltimes:~1nanosecond.Asfaraswe’reconcerned,detectorshaveinfinitelyslowresponses.Theymeasurethetimeintegralofthepulseintensityfrom–
to+
:Thedetectoroutputvoltageisproportionaltothepulseenergy.Bythemselves,detectorstelluslittleaboutapulse.Anothersymbolforadetector:DetectorDetectorPulseMeasurementintheTimeDomain:
VaryingthepulsedelaySincedetectorsareessentiallyinfinitelyslow,howdowemaketime-domainmeasurementsonorusingultrashortlaserpulses????We’lldelayapulseintime.Andhowwillwedothat?Bysimplymovingamirror!Sincelighttravels300µmperps,300µmofmirrordisplacementyieldsadelayof2ps.Thisisveryconvenient.MovingamirrorbackwardbyadistanceLyieldsadelayof:Donotforgetthefactorof2!Lightmusttraveltheextradistancetothemirror—andback!TranslationstageInputpulseE(t)E(t–t)MirrorOutputpulseWecanalsovarythedelayusing
amirrorpairorcornercube.Mirrorpairsinvolvetworeflectionsanddisplacethereturnbeaminspace:Butout-of-planetiltyieldsanonparallelreturnbeam.Cornercubesinvolvethreereflectionsandalsodisplacethereturnbeaminspace.Evenbetter,theyalwaysyieldaparallelreturnbeam:“Hollowcornercubes”avoidpropagationthroughglass.TranslationstageInputpulseE(t)E(t–t)MirrorsOutputpulse[EdmundScientific]Measuringtheinterferogramisequivalenttomeasuringthespectrum.PulseMeasurementintheTimeDomain:
TheMichelsonInterferometerPulseenergy(boring)Fieldautocorrelation(maybeinteresting,but…){TheFTofthefieldautocorrelationisjustthespectrum!Beam-splitterInputpulseDelaySlowdetectorMirrorMirrorE(t)E(t–t)Okay,sohowdowemeasureapulse?V.Wong&I.A.Walmsley,Opt.Lett.19,287-289(1994)I.A.Walmsley&V.Wong,J.Opt.Soc.AmB,13,2453-2463(1996)Result:Usingonlytime-independent,linearfilters,completecharacterizationofapulseisNOTpossiblewithaslowdetector.Translation:Ifyoudon'thaveadetectorormodulatorthatisfastcomparedtothepulsewidth,youCANNOTmeasurethepulseintensityandphase.withonlylinearmeasurements,suchasadetector,interferometer,oraspectrometer.Weneedashorterevent,andwedon’thaveone.Butwedohavethepulseitself,whichisastart.Andwecandevisemethodsforthepulsetogateitselfusingopticalnonlinearities.PulseMeasurementintheTimeDomain:
TheIntensityAutocorrelatorCrossingbeamsinanSHGcrystal,varyingthedelaybetweenthem,andmeasuringthesecond-harmonic(SH)pulseenergyvs.delayyieldstheIntensityAutocorrelation:TheIntensityAutocorrelation:DelayBeam-splitterInputpulseApertureeliminatesinputpulsesandalsoanySHcreatedbytheindividualinputbeams.SlowdetectorMirrorE(t)E(t–t)MirrorsSHGcrystalLensSingle-ShotAutocorrelationWhilethiseffectintroducesarangeofdelaysonanygivenpulseandcouldcauseabroadeningofthetraceinmulti-shotmeasurements,itallowsustomeasureapulseonasinglelasershotifweusealargebeamandalargebeamangletoachievethedesiredrangeofdelays.Single-ShotAutocorrelationc2Single-ShotAutocorrelationInputpulse(expandedinspaceto~1cm)Beam-splitterSHGcrystalCameraE(t)E(t–t)Cylindricallensfocusesthebeamintheverticaldirection(forhighintensity),whilethedelayvarieshorizontally.Nomirrormoves!Crossingthebeamsatalargeangle,focusingwithacylindricallens,anddetectingvs.transversepositionyieldstheautocorrelationforasinglepulse.LensimagescrystalontocameraandhencedelayontopositionatcameraThebeammusthaveconstantintensityvs.horizontalpositiontoavoidbiases.ApertureSingle-ShotAutocorrelationofLongerPulsesIfalongerpulseistobemeasured,alargerrangeofdelaysisrequired.Alongerrangecanbeachievedusingadispersiveelement,suchasaprismorgrating,whichtiltsthepulsefronts.Angulardispersionisundesired,however.Fortunately,ifweneedtousethistrick,it’sbecausethepulseislong.Asaresult,itsbandwidthisusuallysmall,soangulardispersionislessofaproblem(forpulses>10ps).PracticalIssuesinAutocorrelationGroup-velocitymismatchmustbenegligible,orthemeasurementwillbedistorted.Equivalently,thephase-matchingbandwidthmustbesufficient.Soverythincrystals(<100µm!)mustbeused.Thisreducestheefficiencyandhencethesensitivityofthedevice.Conversionefficiencymustbekeptlow,ordistortionsdueto“depletion”ofinputlightfieldswilloccur.Insingle-shotmeasurements,thebeammusthaveaconstantintensityvs.position.Inmulti-shotmeasurements,thebeamoverlapinspacemustbemaintainedasthedelayisscanned.MinimalamountsofglassmustbeusedinthebeambeforethecrystaltominimizetheGVDintroducedintothepulsebytheautocorrelator.It’seasytointroducesystematicerror.Theonlyfeedbackonthe
t
measurementqualityisthatitshouldbemaximalatt=0andsymmetricalindelay:
tbecauseSquarePulseandItsAutocorrelationttPulseAutocorrelationGaussianPulseandItsAutocorrelationPulseAutocorrelationttPulseAutocorrelationttSech2PulseandItsAutocorrelationSincetheoreticalmodelsforidealultrafastlasersusuallypredictsech2pulseshapes,peopleusuallysimplydividetheautocorrelationwidthby1.54andcallitthepulsewidth.EvenwhentheautocorrelationisGaussian…LorentzianPulseandItsAutocorrelationPulseAutocorrelationttAutocorrelationsofmorecomplexintensitiesAutocorrelationsnearlyalwayshaveconsiderablylessstructurethanthecorrespondingintensity.Anautocorrelationtypicallycorrespondstomorethanoneintensity.Thustheautocorrelationdoesnotuniquelydeterminetheintensity.Autocorr2Autocorrelationsofcomplexpulses:firstconsideradoublepulsePulseAutocorrelationtwhere:tAutocorrelationofVeryComplexPulsesIntensityAutocorrelationAstheintensityincreasesincomplexity,itsautocorrelationapproachesabroaddiffusebackgroundwithacoherencespike.PulseMeasurementinBothDomains:
CombiningtheSpectrumandAutocorrelationPerhapsthecombinedinformationoftheautocorrelationandthespectrumcoulddeterminethepulseintensityandphase.Thisideahasbeencalled:“TemporalInformationViaIntensity(TIVI)”J.PeatrossandA.Rundquist,J.Opt.Soc.AmB15,216-222(1998)Itinvolvesaniterativealgorithmtofindanintensityconsistentwiththeautocorrelation.Thenitinvolvesanotheriterativealgorithmtofindthetemporalandspectralphasesconsistentwiththeintensityandspectrum.Neitherstephasauniquesolution,sothisdoesn’twork.AmbiguitiesinTIVI:PulseswiththeSameAutocorrelationandSpectrumPulse#1Pulse#2SpectraandspectralphasesforPulses#1and#2AutocorrelationsforPulses#1and#2IntensityIntensityPhasePhasetFWHM=24fstFWHM=21fs#1#2ChungandWeiner,IEEEJSTQE,2001.SpectraThesepulses—especiallythephases—areverydifferent.AmbiguitiesinTIVI:MorePulseswiththeSameAutocorrelationandSpectrumPulse#3Pulse#4SpectraandspectralphasesforPulses#3and#4AutocorrelationsforPulses#3and#4IntensityIntensityPhasePhasetFWHM=37fstFWHM=28fs#4#3ChungandWeiner,IEEEJSTQE,2001.Despitehavingverydifferentlengths,thesepulseshavethesameauto-correlationandspectrum!There’snowaytoknowallthepulseshavingagivenautocorrelationandspectrum.SpectraThird-OrderAutocorrelationPolarizationGating(PG)wSelf-diffrac-tion(SD)wThird-har-monicgen-eration(THG)
wThird-ordernonlinear-opticaleffectspro-videthe3rd-orderintensityautocorrelation:Notethe2Thethird-orderautocorrelationisnotsymmetrical,soityieldsslightlymoreinformation,butnotthefullpulse.Third-ordereffectsareweaker,soit’slesssensitiveandisusedonlyforamplifiedpulses(>1µJ).Whenashorterreferencepulseisavailable:TheIntensityCross-CorrelationTheIntensityCross-correlation:DelayUnknownpulseSlowdetectorE(t)Eg(t–t)SFGcrystalLensReferencepulseIfashorterreferencepulseisavailable(itneednotbeknown),thenitcanbeusedtomeasuretheunknownpulse.Inthiscase,weperformsum-frequencygeneration,andmeasuretheenergyvs.delay.Ifthereferencepulseismuchshorterthantheunknownpulse,thentheintensitycross-correlationfullydeterminestheunknownpulseintensity.PulseMeasurementintheTimeDomain:
TheInterferometricAutocorrelatorWhatifweuseacollinearbeamgeometry,andallowtheautocorrelatorsignallighttointerferewiththeSHGfromeachindividualbeam?DevelopedbyJ-CDielsUsualAutocor-relationtermNewtermsAlsocalledthe“Fringe-ResolvedAutocorrelation”FilterSlowdetectorSHGcrystalLensBeam-splitterInputpulseDelayMirrorMirrorE(t)E(t–t)MichelsonInterferometerDielsandRudolph,UltrashortLaserPulsePhenomena,AcademicPress,1996.InterferometricAutocorrelationMathThemeasuredintensityvs.delayis:Multiplyingthisout:whereTheInterferometricAutocorrelationisthe
sumoffourdifferentquantities.Constant(uninteresting)Sum-of-intensities-weightedw
“interferogram”ofE(t)
w(oscillatesatwindelay)IntensityautocorrelationInterferogramofthesecondharmonic;equivalenttothespectrumoftheSHw(oscillatesat2windelay)Theinterferometricautocorrelationsimplycombinesseveralmeasuresofthepulseintoone(admittedlycomplex)trace.Conveniently,however,theyoccurwithdifferentoscillationfrequencies:0,w,and2w.InterferometricAutocorrelationandStabilizationInterferometricAutocorrelationTracesforaFlat-phaseGaussianpulse:PulselengthFortunately,it’snotalwaysnecessarytoresolvethefringes.WithstabilizationWithoutstabilizationToresolvethewand2wfringes,whicharespacedbyonlylandl/2,wemustactivelystabilizetheapparatustocanceloutvibrations,whichwperturbthedelaybymanyl.C.Rulliere,FemtosecondLaserPulses,Springer,1998.InterferometricAutocorrelation:ExamplesTheextentofthefringes(atwand2w)indicatestheapproximatewidthoftheinterferogram,whichisthecoherencetime.Ifit’sthesameasthew
widthofthethelow-frequencycomponent,whichistheintensityw
autocorrelation,then
thepulseisnear-Fourier-transformlimited.w
Unchirpedpulse(short)~Coherencetime~PulselengthChirpedpulse(long)~Coherencetime~PulselengthTheinterferometricautocorrelationnicelyrevealstheapproximatepulselengthandcoherencetime,and,inparticular,theirrelativevalues.Solidblacklineshavebeenadded.Theytracetheintensityautocorrelationcomponent(forreference).C.Rulliere,FemtosecondLaserPulses,Springer,1998.Doestheinterferometricautocorrelationyieldthepulseintensityandphase?No.TheclaimhasbeenmadethattheInterferometricAutocorrelation,combinedwiththepulseinterferogram(i.e.,thespectrum),coulddosoNaganuma,IEEEJ.Quant.Electron.25,1225-1233(1989).Buttherequirediterativealgorithmrarelyconverges.Thefactisthattheinterferometricautocorrelationyieldslittlemoreinformationthantheautocorrelationandspectrum.Weshouldn’texpectittoyieldthefullpulseintensityandphase.Indeed,verydifferentpulseshaveverysimilarinterferometricautocorrelations.PulseswithVerySimilarInterferometricAutocorrelationsPulse#1IntensityPhasetFWHM=24fsPulse#2IntensityPhasetFWHM=21fsWithouttryingtofindambiguities,wecanjusttryPulses#1and#2:Despitetheverydifferentpulses,theseIAtracesarenearlyidentical!ChungandWeiner,IEEEJSTQE,2001.InterferometricAutocorrelationsforPulses#1and#2Difference:#1and#2PulseswithVerySimilarInterferometricAutocorrelationsChungandWeiner,IEEEJSTQE,2001.It’sevenhardertodistinguishthetraceswhenthepulsesareshorter,andtherearefewerfringes.ConsiderPulses#1and#2,but1/5aslong:InterferometricAutocorrelationsforShorterPulses#1and#2#1and#2Pulse#1IntensityPhasetFWHM=4.8fs-20-1001020Pulse#2IntensityPhasetFWHM=4.2fs-20-1001020Inpractice,itwouldbevirtuallyimpossibletodistinguishthesetracesalso.Difference:MorePulseswithSimilarInterferometricAutocorrelationsChungandWeiner,IEEEJSTQE,2001.Withouttryingtofindambiguities,wecantryPulses#3and#4:IntensityPhasetF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论