高中数学 2.1 第1课时 合情推理练习 新人教A版选修1-2_第1页
高中数学 2.1 第1课时 合情推理练习 新人教A版选修1-2_第2页
高中数学 2.1 第1课时 合情推理练习 新人教A版选修1-2_第3页
高中数学 2.1 第1课时 合情推理练习 新人教A版选修1-2_第4页
高中数学 2.1 第1课时 合情推理练习 新人教A版选修1-2_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【成才之路】-学年高中数学2.1第1课时合情推理练习新人教A版选修1-2一、选择题1.数列2,5,11,20,x,47,…中的x等于()A.28 B.32C.33 D.27[答案]B[解析]由以上各数可得每两个数之间依次差3,6,9,12……故x=20+12=32.2.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论是()A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2[答案]B[解析]观察各等式的构成规律可以发现,各等式的左边是2n-1(n∈N*)项的和,其首项为n,右边是项数的平方,故第n个等式首项为n,共有2n-1项,右边是(2n-1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.3.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适()A.三角形 B.梯形C.平行四边形 D.矩形[答案]C[解析]从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.4.观察右图图形规律,在其右下角的空格内画上合适的图形为()A. B.△C.▭ D.○[答案]A[解析]图形涉及○、△、▭三种符号;其中△与○各有3个,且各自有两黑一白,所以缺一个黑色▭符号,即应画上▭才合适.5.已知扇形的弧长为l,半径为r,类比三角形的面积公式:S=eq\f(底×高,2),可推知扇形面积公式S扇等于()A.eq\f(r2,2) B.eq\f(l2,2)C.eq\f(lr,2) D.不可类比[答案]C6.平面内的小圆形按照下图中的规律排列,每个图中的圆的个数构成一个数列{an},则下列结论正确的是()①a5=15;②数列{an}是一个等差数列;③数列{an}是一个等比数列;④数列{an}的递推关系是an=an-1+n(n∈N*).A.①②④ B.①③④C.①② D.①④[答案]D[解析]由于a1=1,a2=3,a3=6,a4=10,所以有a2-a1=2,a3-a2=3,a4-a3=4.因此必有a5-a4=5,即a5=15,故①正确.同时④正确,而{an}显然不是等差数列也不是等比数列,故②③错误,故选D.二、填空题7.对于平面几何中的命题:“夹在两平行线之间的平行线段的长度相等”,在立体几何中,类比上述命题,可以得到的命题是:__________________________.[答案]夹在两个平行平面间的平行线段的长度相等8.(·新疆兵团农二师华山中学高二期末)在△ABC中,不等式eq\f(1,A)+eq\f(1,B)+eq\f(1,C)≥eq\f(9,π)成立,在四边形中不等式eq\f(1,A)+eq\f(1,B)+eq\f(1,C)+eq\f(1,D)≥eq\f(16,2π)成立,在五边形中eq\f(1,A)+eq\f(1,B)+eq\f(1,C)+eq\f(1,D)+eq\f(1,E)≥eq\f(25,3π)成立,猜想在n边形A1A2…An中有不等式:________成立.[答案]eq\f(1,A1)+eq\f(1,A2)+eq\f(1,A3)+…+eq\f(1,An)≥eq\f(n2,n-2π)[解析]不等式的左边是n个内角倒数的和,右边分子是n2,分母是(n-2)π,故在n边形A1A2…An中有不等式eq\f(1,A1)+eq\f(1,A2)+eq\f(1,A3)+…+eq\f(1,An)≥eq\f(n2,n-2π)成立.9.(·湖南长沙实验中学、沙城一中联考)在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A-BCD中,DA⊥平面ABC,点O是A在平面BCD内的射影,类比平面三角形射影定理,△ABC、△BOC、△BDC三者面积之间关系为________.[答案]Seq\o\al(2,△ABC)=△OBC·S△DBC[解析]将直角三角形的一条直角边长类比到有一侧棱AD与一侧面ABC垂直的四棱锥的侧面ABC的面积,将此直角边AB在斜边上的射影及斜边的长,类比到△ABC在底面的射影△OBC及底面△BCD的面积可得Seq\o\al(2,△ABC)=S△OBC·S△DBC.三、解答题10.已知数列{an}的第1项,a1=1,且an+1=eq\f(an,1+an)(n=1,2,…),试归纳出这个数列的通项公式.[解析]当n=1时,a1=1;当n=2时,a2=eq\f(1,1+1)=eq\f(1,2);当n=3时,a3=eq\f(\f(1,2),1+\f(1,2))=eq\f(1,3);当n=4时,a4=eq\f(\f(1,3),1+\f(1,3))=eq\f(1,4).观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为an=eq\f(1,n).一、选择题11.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如下图),则第七个三角形数是()A.27 B.28C.29 D.30[答案]B[解析]后面的三角形数依次在前面的基础上顺次加上2,3,4,5,……,故第七个三角形数为21+7=28.12.如图所示的是一串黑白相间排列的珠子,若按这种规律排列下去,那么第36颗珠子的颜色是()A.白色 B.黑色C.白色的可能性大 D.黑色的可能性大[答案]A[解析]由图知,这串珠子的排列规律是:每5个一组(前3个是白色珠子,后2个是黑色珠子)呈周期性排列,而36=5×7+1,即第36颗珠子正好是第8组中的第1颗珠子,其颜色与第一颗珠子的颜色相同,故它的颜色一定是白色.13.(·长安一中、高新一中、交大附中、师大附中、西安中学一模)设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=eq\f(2S,a+b+c);类比这个结论可知:四面体P-ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,四面体P-ABC的体积为V,则r=()A.eq\f(V,S1+S2+S3+S4) B.eq\f(2V,S1+S2+S3+S4)C.eq\f(3V,S1+S2+S3+S4) D.eq\f(4V,S1+S2+S3+S4)[答案]C[解析]将△ABC的三条边长a、b、c类比到四面体P-ABC的四个面面积S1、S2、S3、S4,将三角形面积公式中系数eq\f(1,2),类比到三棱锥体积公式中系数eq\f(1,3),从而可知选C.证明如下:以四面体各面为底,内切球心O为顶点的各三棱锥体积的和为V,∴V=eq\f(1,3)S1r+eq\f(1,3)S2r+eq\f(1,3)S3r+eq\f(1,3)S4r,∴r=eq\f(3V,S1+S2+S3+S4).14.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A.289 B.1024C.1225 D.1378[答案]C[解析]本题主要考查数形的有关知识.图1中满足a2-a1=2,a3-a2=3,…,an-an-1=n,以上累加得an-a1=2+3+…+n,an=1+2+3+…+nan=eq\f(n·n+1,2),图2中满足bn=n2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半;一个数若满足正方形数,其必为某个自然数的平方.∵1225=352=eq\f(49×50,2),∴选C.二、填空题15.已知{bn}为等比数列,b5=2,则b1b2b3…b9=29.若{an}为等差数列,a5=2,则{an}的类似结论为________.[答案]a1+a2+a3+…+a9=2×9[解析]等比数列中,“乘积”类比到等差数列中“和”,故应有结论为a1+a2+a3+…+a9=2×9.16.(·三峡名校联盟联考)观察下列不等式:1+eq\f(1,22)<eq\f(3,2),1+eq\f(1,22)+eq\f(1,32)<eq\f(5,3),1+eq\f(1,22)+eq\f(1,32)+eq\f(1,42)<eq\f(7,4),……照此规律,第五个不等式为________.[答案]1+eq\f(1,22)+eq\f(1,32)+eq\f(1,42)+eq\f(1,52)+eq\f(1,62)<eq\f(11,6)[解析]本题考查了归纳的思想方法.观察可以发现,第n(n≥2)个不等式左端有n+1项,分子为1,分母依次为12,22,32,…,(n+1)2;右端分母为n+1,分子成等差数列,因此第n个不等式为1+eq\f(1,22)+eq\f(1,32)+…+eq\f(1,n+12)<eq\f(2n+1,n+1),所以第五个不等式为:1+eq\f(1,22)+eq\f(1,32)+eq\f(1,42)+eq\f(1,52)+eq\f(1,62)<eq\f(11,6).三、解答题17.已知数列{an}的前n项和为Sn,a1=1且Sn-1+eq\f(1,Sn)+2=0(n≥2),计算S1、S2、S3、S4,并猜想Sn的表达式.[解析]当n=1时,S1=a1=1;当n=2时,eq\f(1,S2)=-2-S1=-3,∴S2=-eq\f(1,3);当n=3时,eq\f(1,S3)=-2-S2=-eq\f(5,3);∴S3=-eq\f(3,5);当n=4时,eq\f(1,S4)=-2-S3=-eq\f(7,5),∴S4=-eq\f(5,7).猜想:Sn=-eq\f(2n-3,2n-1)(n∈N*).18.若a1、a2∈R+,则有不等式eq\f(a\o\al(2,1)+a\o\al(2,2),2)≥eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a1+a2,2)))2成立,此不等式能推广吗?请你至少写出两个不同类型的推广.[解析]本例可以从a1、a2的个数以及指数上进行推广.第一类型:eq\f(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3),3)≥(eq\f(a1+a2+a3,3))2,eq\f(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3)+a\o\al(2,4),4)≥(eq\f(a1+a2+a3+a4,4))2,…,eq\f(a\o\al(2,1)+a\o\al(2,2)+…+a\o\al(2,n),n)≥(eq\f(a1+a2+…+an,n))2;第二类型:eq\f(a\o\al(3,1)+a\o\al(3,2),2)≥(eq\f(a1+a2,2))3,eq\f(a\o\al(4,1)+a\o\a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论