专题06 二次函数性质及应用问题(复习讲义)(解析版)-二轮要点归纳与典例解析_第1页
专题06 二次函数性质及应用问题(复习讲义)(解析版)-二轮要点归纳与典例解析_第2页
专题06 二次函数性质及应用问题(复习讲义)(解析版)-二轮要点归纳与典例解析_第3页
专题06 二次函数性质及应用问题(复习讲义)(解析版)-二轮要点归纳与典例解析_第4页
专题06 二次函数性质及应用问题(复习讲义)(解析版)-二轮要点归纳与典例解析_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题06二次函数性质及应用问题复习讲义【要点归纳|典例解析】类型一:二次函数的图象及性质1.二次函数的概念:一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。2.二次函数y=ax2+bx+c(a≠0)的图像与性质yyxO(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小。3.二次函数的解析式三种形式。(1)一般式y=ax2+bx+c(a≠0).已知图像上三点或三对、的值,通常选择一般式.(2)顶点式已知图像的顶点或对称轴,通常选择顶点式。(3)交点式已知图像与轴的交点坐标、,通常选用交点式。4.根据图像判断a,b,c的符号(1)a确定开口方向:当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。(2)b——对称轴与a左同右异。(3)抛物线与y轴交点坐标(0,c)5.二次函数与一元二次方程的关系抛物线y=ax2+bx+c与x轴交点的横坐标x1,x2是一元二次方程ax2+bx+c=0(a≠0)的根。抛物线y=ax2+bx+c,当y=0时,抛物线便转化为一元二次方程ax2+bx+c=0>0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;=0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;<0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点。6.函数平移规律:左加右减、上加下减.图像平移步骤(1)配方为:,确定顶点(h,k)(2)对x轴,左加右减;对y轴,上加下减。7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x1,x2其对应的纵坐标相等,那么对称轴类型二:二次函数最值问题二次函数最值问题的重要性毋庸置疑,其贯穿了整个中学数学,是中学数学的重要内容之一,也是学好中学数学必须攻克的极为重要的问题之一。二次函数在闭区间上的最值问题是二次函数最值问题的典型代表,其问题类型通常包括不含参数和含参数二次函数在闭区间上的最值问题、二次函数在闭区间上的最值逆向性问题以及可转化为二次函数在闭区间上最值的问题,在此类问题的解决过程中,涉及数形结合、分类讨论等重要数学思想与方法。中考中多涉及到含参数二次函数在闭区间上的最值问题,很多学生不习惯数形结合及分类讨论思想的运用,极易导致解题失误或错误类型一:二次函数的图像及性质1.(2020广西河池)如图,抛物线的对称轴为直线,则下列结论中,错误的是A. B. C. D.【答案】.【解析】由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断..由抛物线的开口向下知,与轴的交点在轴的正半轴上,可得,因此,故本选项正确,不符合题意;.由抛物线与轴有两个交点,可得,故本选项正确,不符合题意;.由对称轴为,得,即,故本选项错误,符合题意;.由对称轴为及抛物线过,可得抛物线与轴的另外一个交点是,所以,故本选项正确,不符合题意.故选:.2.(2020年陕西省)已知抛物线,当时,,且当时,y的值随x值的增大而减小,则m的取值范围是().A.B.C.D.【答案】C【解析】根据“当时,”,得到一个关于m不等式,在根据抛物线,可知抛物线开口向上,再在根据“当时,y的值随x值的增大而减小”,可知抛物线的对称轴在直线的右侧或者是直线,从而列出第二个关于m的不等式,两个不等式联立,即可解得答案.因为抛物线,所以抛物线开口向上.因为当时,,所以①,因为当时,y的值随x值的增大而减小,所以可知抛物线的对称轴在直线的右侧或者是直线,所以②,联立不等式①,②,解得.3.(2020•呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A. B. C. D.【答案】D.【分析】由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),即可排除A、B,然后根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象进行判断.【解答】解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.4.(2020湖北孝感中考模拟)二次函数y=ax2+bx+c的图像如图所示,反比例函数y=eq\f(b,x)与一次函数y=cx+a在同一平面直角坐标系中的大致图像是(),A),B),C),D)【答案】D.【分析】根据二次函数的图像特点,可以确定a、b、c的符号,从而可以确定一次函数和反比例函数图像的趋势。【解答】∵y=ax2+bx+c的图像的开口向下∴a<0∵对称轴在y轴的右侧∴b>0,与y轴正半轴相交∴c>0反比例函数的图像经过第一、三象限一次函数的图像经过第一、三、四象限.故选B.5.(2020广西梧州)已知,关于的一元二次方程的解为,,则下列结论正确的是A. B. C. D.【答案】A【解析】关于的一元二次方程的解为,,可以看作二次函数与轴交点的横坐标,二次函数与轴交点坐标为,,如图:当时,就是抛物线位于轴上方的部分,此时,或;又,;,故选:A.6.(2020广西贺州)已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是(填写序号).【答案】①③④【解析】根据图象可得:,,对称轴:,,,,,故①正确;把代入函数关系式中得:,由抛物线的对称轴是直线,且过点,可得当时,,,故②错误;,,即:,故③正确;由图形可以直接看出④正确.故答案为:①③④.7.(2020甘肃中考)如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③ B.①②④ C.②③④ D.③④⑤【答案】C.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>时,y随着x的增大而增大,故⑤错误;故选:C.8.(2020黑龙江大庆)如图抛物线y=(p>0),点F(0,p),直线l:y=-p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1,B1,连接A1F,B1F,A1O,B1O,若A1F=a,B1F=b,则△A1OB1的面积=______(只用a,b表示).【答案】【解析】先由边相等得到∠A1FB1=90°,进而得到A1B1的长度,由等面积法得到点F到A1B1的距离,进而得到△A1OB1的高,求出三角形面积.设∠A=x,则∠B=180°-x,由题可知,AA1=AF,BB1=BF,所以∠AFA1=,∠BFB1=,所以∠A1FB1=90°,所以△A1FB1是直角三角形,A1B1=,所以点F到A1B1的距离为,因为点F(0,p),直线l:y=-p,△A1OB1的高为,所以△A1OB1的面积=··=9.(2020江苏镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.【答案】.【解析】本题考查了二次函数的应用,解题的关键是根据线段AB的长不大于4,求出a的取值范围,再利用二次函数的增减性求代数式a2+a+1的最小值.∵y=ax2+4ax+4a+1=a(x+2)2+1,∴该抛物线的顶点坐标为(-2,1),对称轴为直线x=-2.∵抛物线过点A(m,3),B(n,3)两点,∴当y=3时,a(x+2)2+1=3,(x+2)2=,当a>0时,x=-2±.∴A(-2-,3),B(-2+,3).∴AB=2.∵线段AB的长不大于4,∴2≤4.∴a≥.∵a2+a+1=(a+)2+,∴当a=,(a2+a+1)min=(a+)2+=.10.(2020北京市)在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含的式子表示);(2)求抛物线的对称轴;(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围.【答案】见解析。【解析】先求出A点的坐标为,由平移规律求得点B的坐标;由A、B两点的纵坐标相同,得A、B为对称点进而求出抛物线对称轴方程;根据a的符号分类讨论分析解答即可.(1)∵当x=0时,抛物线;∴抛物线与y轴交点A点的坐标为,∴由点A向右平移2个单位长度得点B的坐标为;即.∵由A、B两点的纵坐标相同,得A、B为对称点.∴抛物线对称轴方程为;即直线.①当时,.分析图象可得,根据抛物线的对称性,抛物线不可能同时经过点A和点P;也不可能同时经过点B和点Q,所以线段PQ和抛物线没有交点.②当时,.分析图象可得,根据抛物线的对称性,抛物线不可能同时经过点A和点P;但当点Q在点B上方或与点B重合时,抛物线与线段PQ恰好有一个公共点,此时,即.综上所述:当时,抛物线与线段PQ恰好有一个公共点.11.(2020云南中考)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).类型二:二次函数最值问题12.(2020·乐山)如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B. C.D.【答案】C【解析】连接PB,令=0,得x=,故A(-4,),(4,0),∴O是AB的中点,又是线段的中点,∴OQ=PB,点B是圆C外一点,当PB过圆心C时,PB最大,OQ也最大,此时OC=3,OB=4,由勾股定理可得BC=5,PB=BC+PC=5+2=7,OQ=PB=,故选C.13.(2020·无锡)如图,在中,AB=AC=5,BC=,为边上一动点(点除外),以为一边作正方形,连接,则面积的最大值为.【答案】8【解析】过D作DG⊥BC于G,过A作AN⊥BC于N,过E作EH⊥HG于H,延长ED交BC于M.易证△EHD≌△DGC,可设DG=HE=x,∵AB=AC=5,BC=,AN⊥BC,∴BN=BC=2,AN=,∵G⊥BC,AN⊥BC,∴DG∥AN,∴,∴BG=2x,CG=HD=4-2x;易证△HED∽△GMD,于是,,即MG,所以S△BDE=BM×HD=×(2x)×(4-2x)==,当x=时,S△BDE的最大值为8.14.(2020·乐山)如图,点是双曲线:()上的一点,过点作轴的垂线交直线:于点,连结,.当点在曲线上运动,且点在的上方时,△面积的最大值是.【答案】3【解析】∵点是双曲线:()上的一点,∴可设点P坐标为(m,),∵⊥轴,在图象上,∴Q坐标为(m,),PQ=-(),∴△面积=×m×[-(]=,当m=2时,△面积的最大值为3.15.(2020·台州)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且,则m+n的最大值为________.【答案】【解析】过点B作BE⊥l1于点E,作BF⊥l3于点F,过点A作AN⊥l2于点N,过点C作CM⊥l2于点M,设AE=x,CF=y,则BN=x,BM=y,∵BD=4,∴DM=y-4,DN=4-x,∵∠ABC=90°,且∠AEB=∠BFC=90°,∠CMD=∠AND=90°,易得△AEB∽△BFC,△CMD∽△AND,∴,即,mn=xy,∴,即,∴y=10-,∵,∴n=m,m+n=m,∵mn=xy=x(10-)=-x2+10x=m2,当x=时,mn取得最大值为,∴m2=,∴m最大=,∴m+n=m=.16.(2020·凉山)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.【答案】4【解析】在正方形ABCD中,∵AB=12,AE=AB=3,∴BC=AB=12,BE=9,设BP=x,则CP=12-x.∵PQ⊥EP,∴∠EPQ=∠B=∠C=90°,∴∠BEP+∠BPE=∠CPQ+∠BPE=90°,∴∠BEP=∠CPQ,∴△EBP∽△PCQ,∴,∴,整理得CQ=,∴当x=6时,CQ取得最大值为4.故答案为4.17.(2020江苏镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.【答案】.【解析】本题考查了二次函数的应用,解题的关键是根据线段AB的长不大于4,求出a的取值范围,再利用二次函数的增减性求代数式a2+a+1的最小值.∵y=ax2+4ax+4a+1=a(x+2)2+1,∴该抛物线的顶点坐标为(-2,1),对称轴为直线x=-2.∵抛物线过点A(m,3),B(n,3)两点,∴当y=3时,a(x+2)2+1=3,(x+2)2=,当a>0时,x=-2±.∴A(-2-,3),B(-2+,3).∴AB=2.∵线段AB的长不大于4,∴2≤4.∴a≥.∵a2+a+1=(a+)2+,∴当a=,(a2+a+1)min=(a+)2+=.18.(2020·台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当-5≤x≤1时,函数的最大值与最小值之差为16,求b的值.【解析】解:(1)将点(-2,4)代入y=x2+bx+c,得4=(-2)2-2b+c,∴c=2b,∴b,c满足的关系式是c=2b.把c=2b代入y=x2+bx+c,得y=x2+bx+2b,∵顶点坐标是(m,n),n=m2+bm+2b,且m=-,即b=-2m,∴n=-m2-4m.∴n关于m的函数解析式为n=-m2-4m.由(2)的结论,画出函数y=x2+bx+c和函数y=-x2-4x的图象.∵函数y=x2+bx+c的图象不经过第三象限,∴-4≤-≤0.①当-4≤-≤-2,即4≤b≤8时,如图1所示,x=1时,函数取到最大值y=1+3b,x=-时,函数取到最小值y=,∴(1+3b)-=16,即b2+4b-60=0,∴b1=6,b2=-10(舍去);②当-2<-≤0,即=≤b<4时,如图2所示,x=-5时,函数取到最大值y=25-3b,x=-时,函数取到最小值y=,∴(25-3b)-=16,即b2-20b+36=0,∴b1=2,b2=18(舍去);综上所述,b的值为2或6.19.如图,顶点为M的抛物线与x轴交于,两点,与y轴交于点C,过点C作轴交抛物线与另一个点D,作轴,垂足为点E.双曲线经过点D,连接MD,BD.(1)求抛物线的解析式.(2)点N,F分别是x轴,y轴上的两点,当M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,的度数最大?(请直接写出结果)【解析】(1)当时所以,,因为轴,轴,,所以四边形OEDC为矩形,又因为双曲线经过点D,所以,所以,所以将点、代入抛物线得解得所以抛物线的表达式为.(2)解:作点D关于x轴的对称点,作点M关于y轴的对称点,如图(1)由图形轴对称的性质可知,,所以四边形MDNF的周长,因为是定值,所以当最小时,四边形MDNF的周长最小,因为两点之间线段最短,所以当I、F、N、H在同一条直线上时最小所以当I、F、N、H在同一条直线上时,四边形MDNF的周长最小,连接,交x轴于点N,交y轴于点F,因为抛物线的表达式为,所以点M的坐标为,由轴对称的性质可得,,,设直线HI的表达式为,所以,解得,所以直线HI的表达式为,当时,,当时,,所以,所以,,所以当M,D,N,F为顶点的四边形周长最小时,,.(3)解:本题的答案为.解题分析:如图(2),当两点A、B距离是定值,直线CD是一条固定的直线,点P在直线CD上移动,由下图可以看出只有当过A、B的圆与直线CD相切时最大.所以可作过点B、D,且与直线OC相切,切点为P,此时的度数最大,由已知,可得,因为直线OC与相切,所以,所以直线PT的解析式为因为抛物线的表达式为,所以点B的坐标为,因为点B、点可以求得直线BD的垂直平分线的解析式为联立与,得,直线PT与直线BD的交点即为点M,所以因为,可得解得或(舍去)所以当时,的度数最大.类型三:二次函数中特殊图形存在性问题20.如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.【解析】解:(1)根据题意得,-eq\f(b,2a)=3,即b=-6a,则抛物线的解析式为y=ax2-6ax+4,将B(8,0)代入得,0=64a-48a+4,解得a=-eq\f(1,4),则b=eq\f(3,2),∴抛物线的解析式为y=-eq\f(1,4)x2+eq\f(3,2)x+4;(2)设直线BC的解析式为y=kx+d,由抛物线解析式可知:当x=0时,y=4,即点C(0,4),将B(8,0),C(0,4)代入得:解得eq\b\lc\{(\a\vs4\al\co1(k=-\f(1,2),d=4)),∴直线BC的解析式为y=-eq\f(1,2)x+4,设点M的横坐标为x(0<x<8),则点M的纵坐标为-eq\f(1,4)x2+eq\f(3,2)x+4,点N的纵坐标为-eq\f(1,2)x+4,∵点M在抛物线上,点N在线段BC上,MN∥y轴,∴MN=-eq\f(1,4)x2+eq\f(3,2)x+4-(-eq\f(1,2)x+4)=-eq\f(1,4)x2+2x=-eq\f(1,4)(x-4)2+4,∴当x=4时,MN的值最大,最大值为4;(3)存在.令-eq\f(1,4)x2+eq\f(3,2)x+4=0,解得x1=-2,x2=8,∴A(-2,0),又∵C(0,4),由勾股定理得,AC=eq\r(22+42)=2eq\r(5),如解图,过点C作CD⊥对称轴于点D,连接AC.∵抛物线对称轴为直线x=3,∴CD=3,D(3,4).①当AC=CQ时,DQ=eq\r(CQ2-CD2)=eq\r((2\r(5))2-32)=eq\r(11),当点Q在点D的上方时,点Q到x轴的距离为4+eq\r(11),此时,点Q1(3,4+eq\r(11)),当点Q在点D的下方时,点Q到x轴的距离为4-eq\r(11),此时点Q2(3,4-eq\r(11));②当AQ=CQ时,设Q(3,t),则AQ2=(3+2)2+t2,CQ=9+(4-t)2,则(3+2)2+t2=9+(4-t)2,解得t=0,此时,点Q3(3,0);③当AC=AQ时,∵AC=2eq\r(5),点A到对称轴的距离为5,2eq\r(5)<5,∴不可能在对称轴上存在Q点使AC=AQ,综上所述,当点Q的坐标为(3,4+eq\r(11))或(3,4-eq\r(11))或(3,0)时,△ACQ为等腰三角形.21.如图1.在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转,得到新的抛物线.求抛物线的函数表达式:若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围.如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点,设是上的动点,是上的动点,试探究四边形能否成为正方形?若能,求出的值;若不能,请说明理由.【答案】;;四边形可以为正方形,【解析】解:将三点代入得解得;如图.关于对称的抛物线为当过点时有解得:当过点时有解得:;四边形可以为正方形由题意设,是抛物线第一象限上的点解得:(舍去)即如图作,于,于四边形为正方形易证为将代入得解得:(舍去)当时四边形为正方形.22.如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线的一个动点,过点P作PF⊥x轴垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【分析】(1)根据题意,先求出点B、C的坐标,运用待定系数求出抛物线的解析式;(2)用点m表示出FH和PF的长,再由FH=HP列关于m的方程求解;(3)连接AH,以AH为边构造相似三角形,将AQ转化为某一个固定点的线段,再由三点共线计算出AQ+EQ的最小值.【解析】(1)∵OB=3OA=OC,A(,0),∴点B、C的坐标分别为(-3,0),(-3,0).设抛物线的解析式为y=a(x+3)(x-),代入点C的坐标,得:-3=a·3·(-),解得:a=.故该抛物线的解析式为y=(x+3)(x-)=x2+x-3.(2)在Rt△AOC中,由tan∠OAC==,∴∠OAC=60°.又∵AH是∠FAC的平分线,∴∠FAH=30°,则AF=FH.由点P的横坐标为m,则它的纵坐标为m2+m-3.∴AF=-m,PF=3-m2-m.∴FH=AF=(-m).∵FH=HP,则PF=2FH,∴(-m)=m2+m-3.解得:m=(舍去)或m=-.故m的值为-.(3)连接CH.∵AF=AC=2,∠FAH=∠CAH,AF=AF,∴△AHF≌△AHC(SAS),∴FH=CH=2.故⊙H的半径为1.在HA上截取HM=,则AM=4-=.∵=,=,∴=,且∠QHM=∠AHQ,∴△QHM∽△AHQ,∴=,则AQ=MQ,∴AQ+QE=QM+QE.∵点E、M是定点,故当点M、Q、E共线时,QM+QE的值最小,即最小值为线段ME的长.在Rt△AEM中,由勾股定理可知:ME===.23.已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设,当k为何值时,.②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.【答案】(1),D的坐标为;(2)①;②以A,F,O为顶点的三角形与相似,F点的坐标为或.【解析】(1)将A、B两点的坐标代入二次函数解析式,用待定系数法即求出抛物线对应的函数表达式,可求得顶点;(2)①由A、C、D三点的坐标求出,,,可得为直角三角形,若,则点F为AD的中点,可求出k的值;②由条件可判断,则,若以A,F,O为顶点的三角形与相似,可分两种情况考虑:当或时,可分别求出点F的坐标.【详解】(1)抛物线过点,,,解得:,抛物线解析式为;,顶点D的坐标为;(2)①在中,,,,,,,,,,为直角三角形,且,,F为AD的中点,,;②在中,,在中,,,,,,若以A,F,O为顶点的三角形与相似,则可分两种情况考虑:当时,,,设直线BC的解析式为,,解得:,直线BC的解析式为,直线OF的解析式为,设直线AD的解析式为,,解得:,直线AD的解析式为,,解得:,.当时,,,,直线OF的解析式为,,解得:,,综合以上可得F点的坐标为或.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质和直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.类型四:二次函数的实际应用24.(2020贵州省毕节市)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元【答案】见解析。【解析】根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可;利用每件利润×总销量=总利润,进而求出二次函数最值即可.依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=2时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.25..某政府工作报告中强调,2020年着重

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论