2025千题百炼-高考数学100个热点问题(二):第51炼 等差等比数列综合问题含答案_第1页
2025千题百炼-高考数学100个热点问题(二):第51炼 等差等比数列综合问题含答案_第2页
2025千题百炼-高考数学100个热点问题(二):第51炼 等差等比数列综合问题含答案_第3页
2025千题百炼-高考数学100个热点问题(二):第51炼 等差等比数列综合问题含答案_第4页
2025千题百炼-高考数学100个热点问题(二):第51炼 等差等比数列综合问题含答案_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025千题百炼——高考数学100个热点问题(二):第51炼等差等比数列综合问题含答案第51炼等差等比数列综合问题一、基础知识:1、等差数列性质与等比数列性质:等差数列等比数列递推公式通项公式等差(比)中项等间隔抽项仍构成等差数列仍构成等比数列相邻项和成等差数列成等比数列2、等差数列与等比数列的互化:(1)若为等差数列,,则成等比数列证明:设的公差为,则为一个常数所以成等比数列(2)若为正项等比数列,,则成等差数列证明:设的公比为,则为常数所以成等差数列二、典型例题:例1:已知等比数列中,若成等差数列,则公比()A.B.或C.D.思路:由“成等差数列”可得:,再由等比数列定义可得:,所以等式变为:解得或,经检验均符合条件答案:B例2:已知是等差数列,且公差不为零,其前项和是,若成等比数列,则()A.B.C.D.思路:从“成等比数列”入手可得:,整理后可得:,所以,则,且,所以符合要求答案:B小炼有话说:在等差数列(或等比数列)中,如果只有关于项的一个条件,则可以考虑将涉及的项均用(或)进行表示,从而得到(或)的关系例3:已知等比数列中的各项均为正数,且,则_______________思路:由等比数列性质可得:,从而,因为为等比数列,所以为等差数列,求和可用等差数列求和公式:答案:例4:三个数成等比数列,其乘积为,如果第一个数与第三个数各减,则成等差数列,则这三个数为___________思路:可设这三个数为,则有,解得,而第一个数与第三个数各减2,新的等差数列为,所以有:,即,解得或者,时,这三个数为,当时,这三个数为答案:小炼有话说:三个数成等比(或等差)数列时,可以中间的数为核心。设为(或),这种“对称”的设法便于充分利用条件中的乘积与和的运算。例5:设是等差数列,为等比数列,其公比,且,若,则有()A.B.C.D.或思路:抓住和的序数和与的关系,从而以此为入手点。由等差数列性质出发,,因为,而为等比数列,联想到与有关,所以利用均值不等式可得:(故,均值不等式等号不成立)所以即答案:B小炼有话说:要熟悉等差数列与等比数列擅长的运算,等差数列擅长加法,等比数列擅长乘积。所以在选择入手点时可根据表达式的运算进行选择。例6:数列是各项均为正数的等比数列,是等差数列,且,则有()A.B.C.D.与的大小不确定思路:比较大小的式子为和的形式,所以以为入手点,可得,从而作差比较,由为正项等比数列可得:,所以答案:B小炼有话说:要熟悉等差数列与等比数列擅长的运算,等差数列擅长加法,等比数列擅长乘积。所以在选择入手点时可根据表达式的运算进行选择。例7:设数列是以2为首项,1为公差的等差数列,是以1为首项,2为公比的等比数列,则()A.B.C.D.思路:求和看通项,考虑,所以,,所以答案:A例8:(2011,江苏)设,其中成公比为的等比数列,成公差为的等差数列,则的最小值是___________思路:可知等比数列为,等差数列为,依题意可得①,若要最小,则要达到最小,所以在①中,每一项都要尽量取较小的数,即让不等式中的等号成立。所以,所以,验证当时,,①式为,满足题意。答案:例9:已知等差数列的公差,前项和为,等比数列是公比为的正整数,前项和为,若,且是正整数,则等于()A.B.C.D.解:本题的通项公式易于求解,由可得,而处理通项公式的关键是要解出,由可得,所以,由,可得,所以可取的值为,可得只有才有符合条件的,即,所以,所以,,则答案:D例10:个正数排成行列(如表),其中每行数都成等差数列,每列数都成等比数列,且所有的公比都相同,已知,则_______,___________思路:本题抓住公比相同,即只需利用一列求出公比便可用于整个数阵,抓住已知中的,可得,从而只要得到某一行的数,即可求得数阵中的每一项。而第四列即可作为突破口,设每行的公差为由可得,从而,所以。则,求和的通项公式,利用错位相减法可求得:答案:小炼有话说:对于数阵问题首先可设其中的项为(第行第列),因为数阵中每行每列具备特征,所以可将其中一行或一列作为突破口,求得通项公式或者关键量,然后再以该行(或该列)为起点拓展到其他的行与列,从而得到整个数阵的通项公式第52炼等差等比数列的证明在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。一、基础知识:1、如何判断一个数列是等差(或等比)数列(1)定义法(递推公式):(等差),(等比)(2)通项公式:(等差),(等比)(3)前项和:(等差),(等比)(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项2、如何证明一个数列是等差等比数列:(1)通常利用定义法,寻找到公差(公比)(2)也可利用等差等比中项来进行证明,即,均有:(等差)(等比)二、典型例题:例1:已知数列的首项.求证:数列为等比数列思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在这样的倒数,所以考虑递推公式两边同取倒数:即,在考虑构造“”:即数列是公比为的等比数列思路二:代入法:将所证数列视为一个整体,用表示:,则只需证明是等比数列即可,那么需要关于的条件(首项,递推公式),所以用将表示出来,并代换到的递推公式中,进而可从的递推公式出发,进行证明解:令,则递推公式变为:是公比为的等比数列。即数列为等比数列小炼有话说:(1)构造法:在构造的过程中,要寻找所证数列形式的亮点,并以此为突破对递推公式进行变形,如例1中就是抓住所证数列有一个“倒数”的特点,进而对递推公式作取倒数的变换。所以构造法的关键之处在于能够观察到所证数列显著的特点并加以利用(2)代换法:此方法显得模式化,只需经历“换元→表示→代入→化简”即可,说两点:一是代换体现了两个数列的一种对应关系,且这种对应是同序数项的对应(第项对应第项);二是经过代换,得到的递推公式,而所证是等比数列,那么意味着其递推公式经过化简应当形式非常简单,所以尽管代入之后等式复杂,但坚定地化简下去,通常能够得到一个简单的答案。个人认为,代入法是一个比较“无脑”的方法,只需循规蹈矩按步骤去做即可。例2:数列{}的前n项和为,(*).设,证明:数列是等比数列,并求出的通项公式思路:本题所给等式混合在一起,可考虑将其转变为只含或只含的等式,题目中倾向于项的关系,故考虑消掉,再进行求解解:①②①②可得:即是公比为的等比数列令代入(*)可得:小炼有话说:(1)遇到混合在一起的等式,通常转化为纯(项的递推公式)或者纯(前项和的递推公式),变形的方法如下:①消去:向下再写一个关于的式子(如例2),然后两式相减(注意取值范围变化)②消去:只需代换即可()(2)混合在一起的等式可求出,令即可(因为)(3)这里体现出的价值:等差等比数列的通项公式是最好求的:只需一项和公差(公比),构造出等差等比数列也就意味这其通项可求,而通过也可将的通项公式求出。这里要体会两点:一是回顾依递推求通项时,为什么要构造等差等比数列,在这里给予了一个解释;二是体会解答题中这一问的价值:一个复杂的递推公式,直接求其通项公式是一件困难的事,而在第一问中,恰好是搭了一座桥梁,告诉你如何去进行构造辅助数列,进而求解原数列的通项公式。所以遇到此类问题不要只停留在证明,而可以顺藤摸瓜将通项一并求出来例3:已知数列满足:且,求证:为等差数列解:设,则代入可得:为等差数列,即为等差数列例4:已知曲线,过上一点作一斜率为的直线交曲线于另一点(且,点列的横坐标构成数列,其中.(1)求与的关系式;(2)令,求证:数列是等比数列;解:(1)曲线(2),代入到递推公式中可得:是公比为的等比数列小炼有话说:本题(2)用构造法比较复杂,不易构造出的形式,所以考虑用代入法直接求解例5:已知数列满足,判断数列是否为等比数列?若不是,请说明理由;若是,试求出解:设代入到可得:而①时,,不是等比数列②时,是等比数列,即为等比数列例6:(2015山东日照3月考)已知数列中,,求证:数列是等比数列思路:所证数列为,可发现要寻找的是偶数项的联系,所以将已知分段递推关系转变为与之间的关系,再进行构造证明即可证明:由可得:数列是公比为的等比数列例7:(2015湖北襄阳四中阶段性测试)已知数列满足,且对任意非负整数均有:(1)求(2)求证:数列是等差数列,并求出的通项公式解:(1)令可得:再令可得:(2)思路:考虑证明数列是等差数列,则要寻找,的关系,即所涉及项为,结合已知等式令,利用(1)中的,将代换为即可证明,进而求出通项公式证明:在中令得:由(1)得代入可得:数列是公差为的等差数列例8:(2010安徽,20)设数列中的每一项都不为0,求证:是等差数列的充分必要条件是:对都有思路:证明充要条件要将两个条件分别作为条件与结论进行证明,首先证明必要性,即已知等差数列证明恒等式。观察所证等式可联想到求和中的裂项相消。所以考虑,然后恒等式左边进行求和即可证明。再证明充分性,即已知恒等式证明等差数列:恒等式左侧为求和形式,所以考虑向前写一个式子两式相减,进而左边消去大量的项,可得:,通过化简可得:,从而利用等差中项完成等差数列的证明证明:先证必要性:是等差数列当时左边右边当时,考虑左边右边所证恒等式成立再证必要性:①②①②可得:两边同时乘以得:③同理:④③-④可得:为等差数列小炼有话说:(1)本题证明等差数列所用的是等差中项的方法,此类方法多在数列中存在三项关系时使用(2)在充分性的证明中连续用到了构造新式并相减的方法,这也是变形递推公式的方法之一,当原递推公式难以变形时,可考虑使用这种方法构造出新的递推公式,尤其递推公式的一侧是求和形式时,这种方法可以消去大量的项,达到化简递推公式的目的。例9:若数列的各项均为正数,(为常数),且(1)求的值(2)求证:数列为等差数列解:(1)令,则有①令,则有②①②可得:(2)思路:所给的递推公式中含有,而且原递推公式也很

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论