




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省常熟市第一中学数学八年级第一学期期末调研试题题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.满足下列条件的是直角三角形的是()A.,, B.,,C. D.2.一次函数的图象大致是()A. B. C. D.3.a,b是两个连续整数,若a<<b,则a+b的值是()A.7 B.9 C.21 D.254.已知正比例函数的图象如图所示,则这个函数的关系式为()A.y=x B.y=﹣x C.y=﹣3x D.y=﹣x/35.点P(3,)关于x轴对称的点的坐标是()A.(3,) B.(,) C.(3,4) D.(,4)6.如图所示的两个三角形全等,则的度数是()A. B. C. D.7.如果分式方程的解是,则的值是()A.3 B.2 C.-2 D.-38.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6 C.a9÷a3=a3 D.(a3)2=a69.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍 B.缩小3倍 C.缩小6倍 D.不变10.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx﹣k的图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x>ax+4的解集为___.12.已知,求=___________.13.分解因式:.14.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.15.______________.16.地球的半径约为6371km,用科学记数法表示约为_____km.(精确到100km)17.若是一个完全平方式,则__________.18.一次函数的图象经过(-1,0)且函数值随自变量增大而减小,写出一个符合条件的一次函数解析式__________.三、解答题(共66分)19.(10分)如图,在中,,以为直角边作等腰,,斜边交于点.(1)如图1,若,,作于,求线段的长;(2)如图2,作,且,连接,且为中点,求证:.20.(6分)如图,三个顶点的坐标分别为,,.(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)在轴上找一点,使的值最小,请画出点的位置.21.(6分)如图,等边的边长为,点、分别是边、上的动点,点、分别从顶点、同时出发,且它们的速度都为.(1)如图1,连接,求经过多少秒后,是直角三角形;(2)如图2,连接、交于点,在点、运动的过程中,的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.(3)如图3,若点、运动到终点后继续在射线、上运动,直线、交于点,则的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.22.(8分)先化简,再求值:1a·3a-(1a+3)(1a-3),其中a=-1.23.(8分)如图,在四边形中,,,,分别以点为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,交于点.若点是的中点.(1)求证:;(2)求的长.24.(8分)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•﹣=(1)聪明的你请求出盖住部分化简后的结果(2)当x=2时,y等于何值时,原分式的值为525.(10分)如图,在中,,是高线,,,(1)用直尺与圆规作三角形内角的平分线(不写作法,保留作图痕迹).(2)在(1)的前提下,判断①,②中哪一个正确?并说明理由.26.(10分)某射击队准备从甲、乙两名队员中选取一名队员代表该队参加比赛,特为甲、乙两名队员举行了一次选拔赛,要求这两名队员各射击10次.比赛结束后,根据比赛成绩情况,将甲、乙两名队员的比赛成绩制成了如下的统计表:甲队员成绩统计表成绩(环)18910次数(次)5122乙队员成绩统计表成绩(环)18910次数(次)4321(1)经过整理,得到的分析数据如表,求表中的,,的值.队员平均数中位数众数方差甲81.51乙11(2)根据甲、乙两名队员的成绩情况,该射击队准备选派乙参加比赛,请你写出一条射击队选派乙的理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;B.若,,,则AC2+AB2≠CB2,故△ABC不是直角三角形;C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;故答案为:C.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.2、D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式,∵,∴直线斜向下,∵,∴直线经过y轴负半轴,图象经过二、三、四象限.故选:D.【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状.3、A【分析】先求出的范围,即可得出a、b的值,代入求出即可.【详解】解:∵3<<4,∴a=3,b=4,∴a+b=7,故选:A.【点睛】本题考查了估算无理数的大小的应用,解此题的关键是估算出的范围,难度不是很大.4、B【分析】根据正比例函数的待定系数法,即可求解.【详解】设函数解析式为:y=kx(k≠0),∵图象经过(3,﹣3),∴﹣3=k×3,解得:k=﹣1,∴这个函数的关系式为:y=﹣x,故选:B.【点睛】本题主要考查正比例函数的待定系数法,掌握待定系数法,是解题的关键.5、C【分析】根据点坐标关于x轴对称的变换规律即可得.【详解】点坐标关于x轴对称的变换规律:横坐标相同,纵坐标互为相反数,,点P关于x轴对称的点的坐标是,故选:C.【点睛】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于x轴对称的变换规律是解题关键.6、A【分析】根据全等三角形对应角相等解答即可.【详解】解:在△ABC中,∠B=180-58°-72°=50°,∵两个三角形全等,
∴∠1=∠B=50°.
故选A.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.7、C【分析】先把代入原方程,可得关于a的方程,再解方程即得答案.【详解】解:∵方程的解是,∴,解得:a=﹣1.经检验,a=﹣1符合题意.故选:C.【点睛】本题考查了分式方程的解及其解法,属于基本题型,熟练掌握分式方程的解法是解题关键.8、D【解析】A、a2-a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确,故选D.9、A【分析】把原分式中的x换成3x,把y换成3y进行计算,再与原分式比较即可.【详解】解:把原分式中的x换成3x,把y换成3y,那么==3×.故选:A.【点睛】考核知识点:分式性质.运用性质变形是关键.10、D【分析】先根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,判断出k的符号,再根据一次函数的性质即可得出结论.【详解】解:正比例函数y=kx的函数值y随x的增大而减小,∴k<0,一k>0,∴一次函数y=kx-k的图像经过一、二、四象限故选D.【点睛】本题考查的是一次函数的图像与系数的关系,解题时注意:一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图像经过一、二、四象限.二、填空题(每小题3分,共24分)11、x>【分析】由于函数y=2x和y=ax+4的图象相交于点A(),观察函数图象得到当x>时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(),∴当x>时,2x>ax+4,即不等式2x>ax+4的解集为x>.故答案为:x>.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、.【解析】已知等式整理得:,即则原式故答案为13、.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x再应用完全平方公式继续分解即可:【详解】故答案为:【点睛】考核知识点:因式分解.14、(a+1)1.【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],
=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],
=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],
=…,
=(a+1)1.
故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【分析】根据零指数幂和负整数指数幂分别化简,再相乘.【详解】解:,故答案为:.【点睛】本题考查了有理数的乘法运算,涉及到零指数幂和负整数指数幂,解题的关键是掌握零指数幂和负整数指数幂的计算方法.16、6.4×1.【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371km=6.371×1km≈6.4×1km(精确到100km).故答案为:6.4×1【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.17、【解析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵4a2+ka+9=(2a)2+ka+32,
∴ka=±2×2a×3,
解得k=±1.
故答案为:±1.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18、,满足即可【分析】根据题意假设解析式,因为函数值随自变量增大而减小,所以解析式需满足,再代入(-1,0)求出a和b的等量关系即可.【详解】设一次函数解析式代入点(-1,0)得,解得所以我们令故其中一个符合条件的一次函数解析式是.故答案为:.【点睛】本题考察了一次函数的解析式,根据题意得出a和b的等量关系,列出其中一个符合题意的一次函数解析式即可.三、解答题(共66分)19、(1);(2)见解析【分析】(1)由直角三角形的性质可求,由等腰直角三角形的性质可得,即可求BC的长;(2)过点A作AM⊥BC,通过证明△CNM∽△CBD,可得,可得CD=2CN,AN=BD,由“SAS”可证△ACN≌△CFB,可得结论.【详解】(1),,,,,.,,,且,,,;(2)如图,过点作,,,,,,,,,,,,,且,,且,,.,.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,添加恰当辅助线构造全等三角形是本题的关键.20、(1)见解析,,,;(2)见解析【分析】(1)先在坐标系中分别画出点A,B,C关于x轴的对称点,再连线,得到,进而写出、、的坐标即可;(2)先画出点A关于y轴的对称点A′,再连接A′B交y轴于点P,即为所求.【详解】(1)如图所示,即为所求,由图知,的坐标为、的坐标为、的坐标为;(2)画出点A关于y轴的对称点A′,连接A′B交y轴于点P,此时的值最小,如图所示,点即为所求.【点睛】本题主要考查平面直角坐标系中,图形的轴对称变换,通过点的轴对称,求两线段和的最小值,是解题的关键.21、(1)经过秒或秒后,△PCQ是直角三角形;(2)的大小不变,是定值60°;(3)的大小不变,是定值120°.【分析】(1)分∠PQC=90°和∠QPC=90°两种情形求解即可解决问题;
(2)证得△ABP≌△BCQ(SAS),推出∠BAP=∠CBQ,得(定值)即可;(3)证得△ACP≌△BAQ(SAS),推出,得即可.【详解】解:(1)设经过t秒后,△PCQ是直角三角形.
由题意:,,∵是等边三角形,∴,当∠PQC=90°时,∠QPC=30°,
∴PC=2CQ,
∴,
解得.
当∠QPC=90°时,∠PQC=30°,
∴CQ=2PC,
∴,
解得,综上:经过秒或秒后,△PCQ是直角三角形.(2)结论:∠AMQ的大小不变.
∵△ABC是等边三角形,
∴AB=BC,,
∵点P,Q的速度相等,
∴BP=CQ,在△ABP和△BCQ中∴△ABP≌△BCQ(SAS)∴∴(定值)∴的大小不变,是定值60°.(3)结论:∠AMQ的大小不变.∵△ABC是等边三角形,
∴AB=BC,,∴,
∵点P,Q的速度相等,
∴,在△ACP和△BAQ中∴△ACP≌△BAQ(SAS)∴∴(定值)∴的大小不变,是定值120°.【点睛】本题考查的是等边三角形的性质、直角三角形的性质、全等三角形的判定和性质、解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题.22、;【分析】按照整式的乘法法则,单项式乘以单项式、平方差公式,及合并同类项化简,再代值计算即可.【详解】解:1a·3a-(1a+3)(1a-3)当a=-1时,原式==17.【点睛】本题考查整式的乘法法则,掌握法则是基础,正确化简是关键.23、(1)详见解析;(2)【分析】(1)连接AE,CE,由题意得AE=CE,根据等腰三角形中线的性质得证AE=CE.(2)连接CF,通过证明△AOF≌△COB(ASA),求得CF、DF的长,利用勾股定理求得CD的长.【详解】(1)连接AE,CE,由题意可知,AE=CE又∵O是AC的中点,∴EO⊥AC即BE⊥AC(2)连接CF,由(1)知,BE垂直平分AC,∴AF=CF∵AD∥BC,∴∠DAC=∠BCA在△AOF和△COB中∴△AOF≌△COB(ASA)∴AF=BC=2,∴CF=AF=2,∵AD=3,∴DF=3-2=1∵∠D=90°,∴在Rt△CFD中,答:CD的长为【点睛】本题考查了三角形的综合问题,掌握等腰三角形中线的性质、全等三角形的判定定理以及勾股定理是解题的关键.24、(1)﹣;(2)y=【分析】(1)根据被减数、减数、差及因数与积的关系列式,然后化简分式求出盖住的部分即可;(2)根据x=2时分式的值是1,得出关于y的方程,求解即可.【详解】解:(1)∵,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全国旅游合同示范文本
- 2025农业合作合同范本
- 2025年酸碱平衡调节药项目建议书
- 2025全面租赁合同示范文本
- 2025年家用美容、保健电器具项目建议书
- 2025年龙门式加工中心或龙门式卧式铣床项目合作计划书
- 2025年视窗防护屏项目合作计划书
- 2025年法律职业资格考试复习要点试题及答案
- 2025年环境污染防治专用设备合作协议书
- 广安画线施工方案
- 2025届山东省济南市历下区中考二模生物试题含解析
- 创意美术网络安全课件
- 上海电信2025年度智慧城市合作协议2篇
- 2024燃煤发电企业安全生产标准化达标评级标准
- 产前检查妇产科教学课件
- 气球婚礼派对合同范例
- 2024无人机测评规范
- 术中停电应急预案
- 【高分复习笔记】许莉娅《个案工作》(第2版)笔记和课后习题详解
- GB/T 22517.5-2024体育场地使用要求及检验方法第5部分:足球场地
- 幼儿园的社会交往能力
评论
0/150
提交评论