版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海奉贤华亭学校2025届数学八年级第一学期期末质量检测试题量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.甲、乙、丙、丁四人参加射击训练,经过三组练习,他们的平均成绩都是环,方差分别是,,,,你认为谁的成绩更稳定()A.甲 B.乙 C.丙 D.丁2.如图,在中国象棋棋盘中,如果将“卒”的位置记作,那么“相”的位置可记作()A. B. C. D.3.如图,在中,,于点,,,则的度数为()A. B. C. D.4.如图,四边形ABCD与四边形FGHE关于一个点成中心对称,则这个点是()A.O1 B.O2 C.O3 D.O45.下列图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.如图,已知线段米.于点,米,射线于,点从点向运动,每秒走米.点从点向运动,每秒走米.、同时从出发,则出发秒后,在线段上有一点,使与全等,则的值为()A. B.或 C. D.或7.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是08.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022A.甲 B.乙 C.丙 D.丁9.下列命题中是真命题的是()A.平面内,过一点有且只有一条直线与已知直线平行B.,,,,…等五个数都是无理数C.若,则点在第二象限D.若三角形的边、、满足:,则该三角形是直角三角形10.如图,中,,,在直线或上取一点,使为等腰三角形,则符合条件的点共有()A.个 B.个 C.个 D.个11.如图,在矩形中,,动点满足,则点到两点距离之和的最小值为()A. B. C. D.12.如图,四边形绕点顺时针方向旋转得到四边形,下列说法正确的是()A.旋转角是 B.C.若连接,则 D.四边形和四边形可能不全等二、填空题(每题4分,共24分)13.若代数式的值为零,则x的取值应为_____.14.八边形的外角和等于▲°.15.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).16.某招聘考试成绩由笔试和面试组成,笔试占成绩的60%,面试占成绩的40%.小明笔试成绩为95分,面试成绩为85分,那么小明的最终成绩是_____.17.一个三角形三边长分别是4,6,,则的取值范围是____.18.如图,的三条角平分线交于点O,O到AB的距离为3,且的周长为18,则的面积为______.三、解答题(共78分)19.(8分)阅读下面的解题过程,求的最小值.解:∵=,而,即最小值是0;∴的最小值是5依照上面解答过程,(1)求的最小值;(2)求的最大值.20.(8分)探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.21.(8分)探索与证明:(1)如图1,直线经过正三角形的项点,在直线上取两点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并子以证明:(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.22.(10分)沿面积为正方形边的方向剪出一个长方形,能否使剪出的长方形的长、宽之比为3:2,且面积为?23.(10分)在如图所示的平面直角坐标系中:(1)画出关于轴成轴对称图形的三角形;(2)分别写出(1)中的点,,的坐标;(3)求的面积.24.(10分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.25.(12分)如图,已知∠AOB和点C,D.求作:点P,使得点P到∠AOB两边的距离相等,且PC=PD.(要求:用直尺与圆规作图,保留作图痕迹)26.(1)计算:1x4•x1﹣(x1)3(1)分解因式:x3﹣1x1y+xy1.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据方差反映了一组数据的波动大小,方差越大,波动性越大可得答案.【详解】解:∵0.35<0.4<0.45<0.55,∴S丁2<S丙2<S甲2<S乙2,丁的成绩稳定,
故选:D.【点睛】此题主要考查了方差,关键是掌握方差的意义,方差越小成绩越稳定.2、C【分析】根据“卒”所在的位置可以用表示,可知数对中第一个数字表示列,第二个数字表示行,据此可用数对表示出“相”的位置.【详解】用数对分别表示图中棋子“相”的位置:;故选:C.【点睛】此题是考查点与数对,关键是根据已知条件确定数对中每个数字所表示的意义.3、D【分析】根据角平分线的判定可知,BD平分∠ABC,根据已知条件可求出∠A的度数.【详解】解:∵,,且∴是的角平分线,∴,∴,∴在中,,故答案选D.【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键.4、A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.5、C【解析】根据中心对称图形以及轴对称图形的概念逐一进行分析即可得.【详解】A、不是中心对称图形,是轴对称图形,故不符合题意;B、是轴对称图形,也是中心对称图形,故不符合题意;C、是中心对称图形,不是轴对称图形,故符合题意;D、不是中心对称图形,也不是轴对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.6、C【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【详解】当△APC≌△BQP时,AP=BQ,即20-x=3x,解得:x=5;当△APC≌△BPQ时,AP=BP=AB=10米,此时所用时间x为10秒,AC=BQ=30米,不合题意,舍去;综上,出发5秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:C.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.7、A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.8、B【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.【点睛】本题考查了方差,正确理解方差的意义是解题的关键.9、D【分析】根据平行公理、无理数的概念、点坐标特征、勾股定理的逆定理判断即可.【详解】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,本选项说法是假命题;B、,,,,…中只有,…两个数是无理数,本选项说法是假命题;C、若,则点在第一象限,本选项说法是假命题;D、,化简得,则该三角形是直角三角形,本选项说法是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、B【分析】分别以A为顶点、B为顶点、P为顶点讨论即可.【详解】以点A为圆心,AB为半径作圆,交AC于P1,P2,交BC与P3,此时满足条件的等腰△PAB有3个;以点B为圆心,AB为半径作圆,交AC于P5,交BC与P4,P6,此时满足条件的等腰△PAB有3个;作AB的垂直平分线,交BC于P7,此时满足条件的等腰△PAB有1个;∵,∴∠ABP3=60°,∵AB=AP3,∴△ABP3是等边三角形;同理可证△ABP6,△ABP6是等边三角形,即△ABP3,△ABP6,△ABP7重合,综上可知,满足条件的等腰△PAB有5个.故选B.【点睛】本题考查了等腰三角形的定义,等边三角形的判定,以及分类讨论的数学思想,分类讨论是解答本题的关键.11、A【分析】先由,得出动点在与平行且与的距离是的直线上,作关于直线的对称点,连接,则的长就是所求的最短距离.然后在直角三角形中,由勾股定理求得的值,即可得到的最小值.【详解】设中边上的高是.,,,动点在与平行且与的距离是的直线上,如图,作关于直线的对称点,连接,则的长就是所求的最短距离,在中,,,即的最小值为.故选:A.【点睛】本题考查了轴对称﹣最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.12、C【分析】根据旋转的旋转及特点即可依次判断.【详解】旋转角是或,故A错误;,故B错误;若连接,即对应点与旋转中心的连接的线段,故则,C正确;四边形和四边形一定全等,故D错误;故选C.【点睛】此题主要考查旋转的性质,解题的关键是熟知旋转的特点与性质.二、填空题(每题4分,共24分)13、1.【分析】分式的值为2的条件是:(1)分子=2;(1)分母≠2.两个条件需同时具备,缺一不可.【详解】解:若代数式的值为零,则(x﹣1)=2或(x﹣1)=2,即x=1或1,∵|x|﹣1≠2,x≠1,∴x的取值应为1,故代数式的值为零,则x的取值应为1.【点睛】由于该类型的题易忽略分母不为2这个条件,所以常以这个知识点来命题.14、360【分析】根据多边形的外角和等于360°进行解答.【详解】根据多边形的外角和等于360°,∴八边形的外角和等于360°15、①③【分析】①由已知条件证明DAB≌EAC即可;②由①可得ABD=ACE<45°,DCB>45°;③由ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°可判断③;④由BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1可判断④.【详解】解:∵DAE=BAC=90°,∴DAB=EAC,∵AD=AE,AB=AC,∴AED=ADE=ABC=ACB=45°,∵在DAB和EAC中,,∴DAB≌EAC,∴BD=CE,ABD=ECA,故①正确;由①可得ABD=ACE<45°,DCB>45°故②错误;∵ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC=45°+45°=90°,∴CEB=90°,即CE⊥BD,故③正确;∴BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.∴BE1=1(AD1+AB1)-CD1,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.16、1【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】根据题意得:小明的最终成绩是95×60%+85×40%=1(分).故答案为1.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求95和85两个数的平均数,对平均数的理解不正确.17、【分析】根据三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,即可得出结论.【详解】解:∵一个三角形三边长分别是4,6,,∴6-4<<6+4解得:2<<10故答案为:.【点睛】此题考查的是根据三角形的两边长,求第三边的取值范围,掌握三角形的三边关系是解决此题的关键.18、27【分析】作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【详解】如图,作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE=OF=3,∴S△ABC=S△OBC+S△OAC+S△OAB=AB•OD+AC•OE+BC•OF=OD(AB+BC+AC)=×3×18=27,故答案为27.【点睛】本题考查了角平分线的性质,三角形的面积;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.三、解答题(共78分)19、(1)2019;(2)1.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可;(2)利用完全平方公式把原式变形,利用非负数的性质解答即可;【详解】(1)∵,∴,∴的最小值为2019;(2),∵,∴,∴,∴的最大值是1.【点睛】本题考查的是配方法的应用,掌握完全平方公式和偶次方的非负性是解题的关键.20、(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.21、(1)猜想:.证明见解析;(2)猜想:.证明见解析.【分析】(1)应用AAS证明△DAB≌△ECA,则有AD=CE,BD=AE,问题可解(2)AAS证明△DAB≌△ECA则有AD=CE,BD=AE,问题可解.【详解】(1)猜想:.证明:由已知条件可知:,,在和中,,,.,.(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.(2)猜想:.证明:由已知条件可知:,,.在和中,,,.,.【点睛】本题考查全等三角形的性质与AAS判定三角形全等,解答关键是根据题意找到需要证明的全等三角形.22、不能使剪出的长方形纸片的长宽之比为3:1,且面积为48cm1.【分析】可设它的长为,则宽为,根据面积公式列出一元二次方程解答即可求出的值,再代入长宽的表达式,看是否符合条件即可.【详解】设长方形纸片的长为,则宽为,则,解得:,∵正方形面积为60cm1,∴边长为,长方形纸片的长为:1×3=6,∵,,∴,所以沿此面积为60cm1正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为3:1,且面积为48cm1.【点睛】本题考查了一元二次方程的应用以及算术平方根和正方形性质等知识,解题的关键是先求出所裁出的长方形纸片的长.23、(1)见解析;(2),,;(3)【分析】(1)根据轴对称的性质,找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各顶点即可得;(2)根据所画图形可直接写出,,的坐标;(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图,为所求.(2),,.(3)【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.24、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论