版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市平谷区名校2025届数学八年级第一学期期末学业水平测试试题试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5° B.8° C.10° D.15°2.下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+) D.2x2﹣8y2=2(x+2y)(x﹣2y)3.下列手机APP图案中,属于轴对称的是()A. B. C. D.4.△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=1.,则∠A的度数是()A.35 B.40 C.70 D.1105.已知一组数据20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A.平均数>中位数>众数 B.平均数<中位数<众数C.中位数<众数<平均数 D.平均数=中位数=众数6.通过“第十四章整式的乘法与因式分解”的学习,我们知道:可以利用图形中面积的等量关系得到某些数学公式,如图,可以利用此图得到的数学公式是()A. B.C. D.7.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③ B.①②④ C.①③④ D.①②③④8.人数相同的八年级一、二两班同学在同一次数学单元测试,班级平均分和方差如下:,,则成绩较为稳定的班级是()A.一班 B.二班 C.两班成绩一样稳定 D.无法确定9.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A.15° B.22.5° C.30° D.45°10.某校八年级一班抽取5名女生进行800米跑测试,她们的成绩分别为75,85,90,80,90(单位:分),则这次抽测成绩的众数和中位数分别是()A.90,85 B.85,84 C.84,90 D.90,90二、填空题(每小题3分,共24分)11.如图,在,,点是上一点,、分别是线段、的垂直平分线,则________.12.在一次函数y=﹣3x+1中,当﹣1<x<2时,对应y的取值范围是_____.13.若为三角形的三边,且满足,第三边为偶数,则=__________.14.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____.15.若为实数,且,则的值为.16.如图,CD平分∠ACB,AE∥DC交BC的延长线于E,若∠ACE=80°,则∠CAE=_____17.分解因式:x-x3=____________.18.不等式组的解为,则的取值范围是______.三、解答题(共66分)19.(10分)先化简,再求值:,其中x=1,y=2.20.(6分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.21.(6分)(1)计算与化简:①②(2)解方程(3)因式分解22.(8分)如图,在平面直角坐标系中,直线AB过点A(﹣1,1),B(2,0),交y轴于点C,点D(0,n)在点C上方.连接AD,BD.(1)求直线AB的关系式;(2)求△ABD的面积;(用含n的代数式表示)(3)当S△ABD=2时,作等腰直角三角形DBP,使DB=DP,求出点P的坐标.23.(8分)阅读下面的解题过程,求的最小值.解:∵=,而,即最小值是0;∴的最小值是5依照上面解答过程,(1)求的最小值;(2)求的最大值.24.(8分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).25.(10分)在等边中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且.如图1,若点E是AB的中点,求证:;如图2,若点E不是AB的中点时,中的结论“”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.26.(10分)如图,将长方形ABCD沿EF折叠,使点D与点B重合.(1)若∠AEB=40°,求∠BFE的度数;(2)若AB=6,AD=18,求CF的长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】依据直角三角形,即可得到∠BCE=40°,再根据∠A=30°,CD平分∠ACB,即可得到∠BCD的度数,再根据∠DCE=∠BCD﹣∠BCE进行计算即可.【详解】∵∠B=50°,CE⊥AB,∴∠BCE=40°,又∵∠A=30°,CD平分∠ACB,∴∠BCD=∠BCA=×(180°﹣50°﹣30°)=50°,∴∠DCE=∠BCD﹣∠BCE=50°﹣40°=10°,故选C.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.2、D【解析】A.没把一个多项式转化成几个整式积的形式,故A错误;B.是整式的乘法,故B错误;C.没把一个多项式转化成几个整式积的形式,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.3、B【分析】根据轴对称的定义即可判断.【详解】A不是轴对称图形,B是轴对称图形,C不是轴对称图形,D不是轴对称图形,故选B.【点睛】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.4、B【解析】设∠A的度数是x,则∠C=∠B=,∵BD平分∠ABC交AC边于点D∴∠DBC=,∴++1=180°,∴x=40°,∴∠A的度数是40°.故选:B.5、D【解析】从小到大数据排列为20、30、40、1、1、1、60、70、80,1出现了3次,为出现次数最多的数,故众数为1;共9个数据,第5个数为1,故中位数是1;平均数=(20+30+40+1+1+1+60+70+80)÷9=1.∴平均数=中位数=众数.故选D.6、B【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【详解】∵左上角正方形的面积,
左上角正方形的面积,还可以表示为,
∴利用此图得到的数学公式是.故选:B【点睛】本题考查的是根据面积推导乘法公式,灵活运用整体面积等于部分面积之和是解题的关键.7、C【解析】对于①,作∠B或∠C的平分线即可,②不能,③作斜边上的高,④在BC上取点D,使BD=BA即可.【详解】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①图,作∠ABC的平分线交AC于点D,则分成的两个三角形的角的度数分别为:36°,36°,108°和36°,72°72°,符合要求;②图不能被一条直线分成两个小等腰三角形;③图,作等腰直角三角形斜边上的高AD,则可把它分为两个小等腰直角三角形,符合要求;④图,在BC上取点D,使BD=BA,作直线AD,则分成的两个三角形的角的度数分别为:36°,72,72°和36°,36°,108°,符合要求.故选C.【点睛】本题考查了等腰三角形的判定和三角形的内角和定理,在等腰三角形中,从一个顶点向对边引一条线段,分原等腰三角形为两个新的等腰三角形,必须存在新出现的一个小等腰三角形与原等腰三角形相似才有可能.8、B【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【详解】解:∵,
∴成绩较为稳定的班级是乙班.
故选:B.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9、C【解析】试题解析:过E作EM∥BC,交AD于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD是BC边上的中线,△ABC是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E和M关于AD对称,连接CM交AD于F,连接EF,则此时EF+CF的值最小,∵△ABC是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF=∠ACB=30°,故选C.10、A【分析】由题意直接根据众数和中位数的概念,结合题干数据求解即可.【详解】解:将这组数据按照从小到大的顺序排列为:75,80,1,90,90,则众数为90,中位数为1.故选:A.【点睛】本题考查众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(每小题3分,共24分)11、【分析】根据、分别是线段、的垂直平分线,得到BE=DE,DF=CF,由等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,根据三角形的内角和得到∠B+∠C=180−∠A,根据平角的定义即可得到结论.【详解】∵、分别是线段、的垂直平分线,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵,∴∠EDB+∠FDC=180−,∴∠B+∠C=100,∴∠A=180-100=80,故答案为:80.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.12、-5<y<1【解析】解:由y=﹣3x+1得到x=﹣,∵﹣1<x<2,∴﹣1<﹣<2,解得﹣5<y<1.故答案为﹣5<y<1.点睛:本题考查了一次函数的性质,根据题意得出关于y的不等式是解答此题的关键.13、3【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【详解】∵a、b满足(b﹣1)1=0,∴a=3,b=1.∵a、b、c为三角形的三边,∴8<c<11.∵第三边c为偶数,∴c=3.故答案为:3.【点睛】本题考查了三角形三边关系以及非负数的性质,解答本题的关键是求出a和b的值,此题难度不大.14、x>1.【详解】∵直线y=x+b与直线y=kx+6交于点P(1,5),∴由图象可得,当x>1时,x+b>kx+6,即不等式x+b>kx+6的解集为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15、1【分析】根据偶次方、算术平方根的非负性分别求出a、b,根据乘方法则计算即可.【详解】∵,∴(a)1=0,0,解得:a,b=1,则ab=()1=1.故答案为:1.【点睛】本题考查了非负数的性质,掌握偶次方、算术平方根的非负性是解答本题的关键.16、【详解】∠ACE=80°,°,又CD平分°,AE∥DC,°,∠CAE=180°-80°-50°=50°.故答案为:50°.17、x(1+x)(1-x)【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.【详解】x−x3=x(1−x2)=x(1−x)(1+x).故答案为x(1−x)(1+x).【点睛】本题考查提取公因式法以及公式法分解因式,正确应用公式法是解题关键.18、【分析】根据不等式组的公共解集即可确定a的取值范围.【详解】由不等式组的解为,可得.
故答案为:.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题(共66分)19、;5【分析】利用平方差公式、完全平方公式以及整式的混合运算将原式化简,再将x=1,y=2代入化简后的式子,求值即可.【详解】解:原式当x=1,y=2时,原式【点睛】本题考查整式的混合运算和化简求值,熟练掌握整式的混合运算法则以及平方差公式、完全平方公式是解题关键.20、证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考点:1.等腰三角形的性质;2.全等三角形的判定与性质.21、(1)①;②;(2);(3)【分析】(1)①分别进行负整数指数幂、零指数幂等运算,然后合并;②先计算积的乘方,再计算单项式除以单项式即可;(2)方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)先提公因式(),再利用平方差公式继续分解即可.【详解】(1)①;②;(2)解方程两边同乘以()()去分母得:,去括号、合并得:,解得:,经检验,是原方程的解,∴;(3).【点睛】本题考查了实数的运算,幂的混合运算,解分式方程以及因式分解,熟练掌握运算法则是解本题的关键.22、(1)y=﹣x+;(2)n﹣1;(3)P(2,4)或(﹣2,0).【解析】(1)设直线AB的解析式为:y=kx+b,把点A(﹣1,1),B(2,0)代入即可得到结论;(2)由(1)知:C(0,),得到CD=n﹣,根据三角形的面积公式即可得到结论;(3)根据三角形的面积得到D(0,2),求得OD=OB,推出△BOD三等腰直角三角形,根据勾股定理得到BD=2,根据等腰直角三角形的性质即可得到结论.【详解】解:(1)设直线AB的解析式为:y=kx+b,把点A(﹣1,1),B(2,0)代入得,,解得:,∴直线AB的关系式为:y=﹣x+;(2)由(1)知:C(0,),∴CD=n﹣,∴△ABD的面积=×(n﹣)×1+(n﹣)×2=n﹣1;(3)∵△ABD的面积=n﹣1=2,∴n=2,∴D(0,2),∴OD=OB,∴△BOD三等腰直角三角形,∴BD=2,如图,∵△DBP是等腰直角三角形,DB=DP,∴∠DBP=45°,∴∠OBD=45°,∴∠OBP=90°,∴PB=DB=4,∴P(2,4)或(﹣2,0).故答案为(1)y=﹣x+;(2)n﹣1;(3)P(2,4)或(﹣2,0).【点睛】本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,正确的作出图形是解题的关键.23、(1)2019;(2)1.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可;(2)利用完全平方公式把原式变形,利用非负数的性质解答即可;【详解】(1)∵,∴,∴的最小值为2019;(2),∵,∴,∴,∴的最大值是1.【点睛】本题考查的是配方法的应用,掌握完全平方公式和偶次方的非负性是解题的关键.24、每天只需要安排6名工人就可以完成分拣工作.【分析】设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,根据工作时间=工作总量÷工作效率结合5人用此设备分拣8000件快件的时间比20人用传统方式分拣同样数量的快件节省4小时,即可得出关于x的分式方程,解之经检验后即可得出x的值,再利用需要人数=工作总量÷每人每天用智能分拣设备后的工作量,即可求出结论(利用进一法取整).【详解】解:设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,依题意,得:,解得:x=84,经检验,x=84是原方程的解,且符合题意,∴100000÷(84×25×8)=5(人)……16000(件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大学生国防科技知识竞赛题库及答案(共150题)
- DNA检测行业市场调研分析报告
- 排字机印刷产品供应链分析
- 家用电动按摩装置产业规划专项研究报告
- 扑爽身粉用海绵产业运行及前景预测报告
- 数学课程评价标准方案
- 船舶维修起重吊装施工方案
- 科技公司股份协议书模板
- 红色撞色企业年终总结
- 特殊教育学校资助管理制度
- ASTM_A29/A29M热锻及冷加工碳素钢和合金钢棒
- 社区委员的辞职报告 社区两委辞职报告
- 一次性使用卫生用品卫生标准GB15979-2002
- 简历常用icon图标Word简历模板
- 社区老年人群保健与护理PPT课件
- 【行业】电动车动力电池包高清大图赏析
- F1等级砝码标准报告
- 医院物资管理规定
- GL-585W90重负荷齿轮油质量指标
- 土地利用现状上色标准表
- 超声波—微波辅助酸浸提纯硅藻土的试验研究
评论
0/150
提交评论