版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共16页2024-2025学年黑龙江省哈尔滨市巴彦县数学九年级第一学期开学经典试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>02、(4分)如图,四边形ABCD为矩形,依据尺规作图的痕迹,∠α与∠β的度数之间的关系为()A.β=180-α B.β=180°- C.β=90°-α D.β=90°-3、(4分)如果ab>0,a+b<0,那么下面各式:①ab=ab;②ab⋅ba=A.①② B.①③ C.①②③ D.②③4、(4分)如图,在一次实践活动课上,小明为了测量池塘B、C两点间的距离,他先在池塘的一侧选定一点A,然后测量出AB、AC的中点D、E,且DE=10m,于是可以计算出池塘B、C两点间的距离是()A.5m B.10m C.15m D.20m5、(4分)以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=x﹣2与边AB、BC分别交于点E、F,若AB=10,BC=3,则△EBF的面积是()A.4 B.5 C.6 D.76、(4分)河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是()米.A. B.5 C.15 D.7、(4分)如图,直线与相交于点P,点P的横坐标为-1,则关于x的不等式的解集在数轴上表示为()A. B.C. D.8、(4分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.10、(4分)如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_11、(4分)已知点M(m,3)在直线上,则m=______.12、(4分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。13、(4分)当x_____时,分式有意义.三、解答题(本大题共5个小题,共48分)14、(12分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?15、(8分)先化简,再求值:,其中x=2019.16、(8分)如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于两点,其对称轴与轴交于点.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标;若不存在,请说明理由;(3)连接,在直线的下方的抛物线上,是否存在一点,使的面积最大?若存在,请求出点的坐标;若不存在,请说明理由.17、(10分)我国古代数学名著《孙子算经》中有这样一道有关于自然数的题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?”就是说:一个数被2除余2,被5除余2,被7除余2,求这个数.《孙子算经》的解决方法大体是这样的先求被2除余2,同时能被5,7都整除的数,最小为1.再求被5除余2.同时能被2,7都整除的数,最小为62.最后求被7除余2,同时能被2,5都整除的数,最小为20.于是数1+62+20=222.就是一个所求的数.那么它减去或加上2,5,7的最小公倍数105的倍数,比如222﹣105=128,222+105=288…也是符合要求的数,所以符合要求的数有无限个,最小的是22.我们定义,一个自然数,若满足被2除余1,被2除余2,被5除余2,则称这个数是“魅力数”.(1)判断42是否是“魅力数”?请说明理由;(2)求出不大于100的所有的“魅力数”.18、(10分)如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.(1)当时,判断的形状,并说明理由;(2)求的度数;(3)请你探究:当为多少度时,是等腰三角形?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如果a2-ka+81是完全平方式,则k=________.20、(4分)如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_____.21、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)22、(4分)化简:________.23、(4分)如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是_____.二、解答题(本大题共3个小题,共30分)24、(8分)计算:(1)2﹣6+3;(2)(﹣)(+)+(2﹣3)2;用指定方法解下列一元二次方程:(3)x2﹣36=0(直接开平方法);(4)x2﹣4x=2(配方法);(5)2x2﹣5x+1=0(公式法);(6)(x+1)2+8(x+1)+16=0(因式分解法)25、(10分)如图,某一时刻垂直于地面的大楼的影子一部分在地上,另一部分在斜坡上.已知坡角,米,米,且同一时刻竖直于地面长1米的标杆的影长恰好也为1米,求大楼的高度.26、(12分)化简:
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】试题分析:根据一次函数的图像与性质,由图像向上斜,可知k>0,由与y轴的交点,可知b>0.故选:D点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.2、D【解析】
如图,根据题意得∠DAC=∠α,∠EAO=∠α,∠AEO=∠β,∠EOA=90°,再根据三角形内角和定理可得β=90°-.【详解】如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠α由作图痕迹可得AE平分∠DAC,EO⊥AC∴∠EAO=∠α,∠EOA=90°又∠AEO=∠β,∠EAO+∠AOE+∠AEO=180°,∴∠α+∠β+90°=180°,∴β=90°-故选D.本题考查了矩形的性质,角平分线以及线段垂直平分线的性质,熟练掌握和运用相关的知识是解题的关键.3、D【解析】
先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.【详解】∵ab>0,a+b<0,∴a<0,b<0,∴ababab÷a故选D.本题考查了二次根式的性质,熟练掌握性质是解答本题的关键.a2=a=a(a≥0)-a(a<0),ab=a⋅ba≥0,b≥04、D【解析】
根据三角形中位线定理可得到BC=2DE,可得到答案.【详解】∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴BC=2DE=20m,故选D.本题主要考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.5、A【解析】
根据题意得:B(2,﹣),可得E的纵坐标为﹣,F的横坐标为2.代入解析式y=x﹣2可求E,F坐标.则可求△EBF的面积.【详解】解:∵x轴过BC中点,y轴过CD中点,AB=20,BC=3∴B(2,﹣)∴E的纵坐标为﹣,F的横坐标为2.∵y=x﹣2与边AB、BC分别交于点E、F.∴当x=2时,y=.当y=﹣时,x=2.∴E(2,﹣),F(2,)∴BE=4,BF=2∴S△BEF=BE×BF=4故选A.本题考查了一次函数图象上点的坐标特征,矩形的性质,关键是找到E,F两点坐标.6、A【解析】
Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】解:Rt△ABC中,BC=5米,tanA=1:,∴tanA=,∴AC=BC÷tanA=5÷=米,故选:A.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,解题的关键是熟练掌握坡度的定义,此题难度不大.7、A【解析】
观察函数图象得到当x>-1时,函数y=x+b的图象都在y=kx-1的图象上方,所以不等式x+b>kx-1的解集为x>-1,然后根据用数轴表示不等式解集的方法对各选项进行判断.【详解】当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(本大题共5个小题,每小题4分,共20分)9、4.【解析】试题解析:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.考点:矩形的性质.10、1【解析】试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.考点:轴对称—最短路径问题点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键11、2【解析】
把点M代入即可求解.【详解】把点M代入,即3=2m-1,解得m=2,故填:2.此题主要考查一次函数,解题的关键是熟知坐标与函数的关系.12、36【解析】
连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【详解】连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD=13=169,CD+AC=12+5=144+25=169,∴CD+AC=AD,∴△ACD为直角三角形,∠ACD=90°,则S四边形ABCD=S△ABC+S△ACD=AB⋅BC+AC⋅CD=×3×4+×5×12=36,故四边形ABCD的面积是36此题考查勾股定理的逆定理,勾股定理,解题关键在于作辅助线13、≠.【解析】
要使分式有意义,分式的分母不能为1.【详解】因为4x+5≠1,所以x≠-.故答案为≠−.解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.三、解答题(本大题共5个小题,共48分)14、(1)该一次函数解析式为y=﹣110x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得150k+b=45b=60,解得:k=-∴该一次函数解析式为y=﹣110(2)当y=﹣110x+1=8解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.15、x+2,2021【解析】
先把除法转化为乘法,约分化简,然后把x=2019代入计算即可.【详解】原式==x+2,当x=2019时,原式=2019+2=2021.本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.16、(1),抛物线的对称轴是;(2)点坐标为.理由见解析;(3)在直线的下方的抛物线上存在点,使面积最大.点的坐标为.【解析】
(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式,再利用二次函数的性质可求出抛物线的对称轴;(2)连接交对称轴于点,此时的周长最小,利用二次函数图象上点的坐标特征可求出点的坐标,由点,B的坐标,利用待定系数法可求出直线AC的解析式,再利用一次函数图象上点的坐标特征可求出点P的坐标;(3)过点N作NE∥y轴交AC于点E,交x轴于点F,过点A作AD⊥NE于点D,设点N的坐标为(t,t2-t+4)(0<t<5),则点E的坐标为(t,-t+4),进而可得出NE的长,由三角形的面积公式结合S△CAN=S△NAE+S△NCE可得出S△CAN关于t的函数关系式,再利用二次函数的性质即可解决最值问题.【详解】(1)根据已知条件可设抛物线的解析式为,∴,∴抛物线的对称轴是;(2)点坐标为.理由如下:∵点(0,4),抛物线的对称轴是,∴点关于对称轴的对称点的坐标为(6,4),如图1,连接交对称轴于点,连接,此时的周长最小.设直线的解析式为,把(6,4),(1,0)代入得,解得,∴,∵点的横坐标为3,∴点的纵坐标为,∴所求点的坐标为.(3)在直线的下方的抛物线上存在点,使面积最大.设点的横坐标为,此时点,如图2,过点作轴交于;作于点,由点(0,4)和点(5,0)得直线的解析式为,把代入得,则,此时,∵,∴,∴当时,面积的最大值为,由得,∴点的坐标为.本题考查了待定系数法求二次函数解析式、二次函数的性质、轴对称-最短路径问题、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短,确定点P的位置;(3)利用三角形的面积公式结合S△CAN=S△NAE+S△NCE,找出S△CAN关于t的函数关系式.17、(1)49不是“魅力数”,理由详见解析;(9)99、59、89.【解析】
(1)验证49是否满足“被9除余1,被9除余9,被5除余9”这三个条件,若全部满足,则为“魅力数”,若不全满足,则不是“魅力数”;(9)根据样例,先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.于是数8+90+11=59,再用它减去或加上9,9,5的最小公倍数90的倍数得结果.【详解】解:(1)49不是“魅力数”.理由如下:∵49=14×9+1,∴49被9除余1,不余9,∴根据“魅力数”的定义知,49不是“魅力数”;(9)先求被9除余1,同时能被9,5都整除的数,最小为8.再求被9除余9.同时能被9,5都整除的数,最小为90.最后求被5除余9,同时能被9,9都整除的数,最小为11.∴数8+90+11=59是“魅力数”,∵9、9、5的最小公倍数为90,∴59﹣90=99也是“魅力数”,59+90=89也是“魅力数”,故不大于100的所有的“魅力数”有99、59、89三个数.本题考查了数学文化问题,读懂题意,明确定义是解题的关键.18、(1)为直角三角形,理由见解析;(2);(3)当为或或时,为等腰三角形.【解析】
(1)由旋转可以得出和均为等边三角形
,再根据求出,进而可得为直角三角形;(2)因为进而求得,根据,即可求出求的度数;(3)由条件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,当∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA时分别求出a的值即可.【详解】解:(1)为直角三角形,理由如下:绕顺时针旋转得到,和均为等边三角形,,,,,为直角三角形;(2)由(1)知:,,,,;(3)∵∠AOB=110°,∠BOC=α∴∠AOC=250°-a.∵△OCD是等边三角形,∴∠DOC=∠ODC=60°,∴∠ADO=a-60°,∠AOD=190°-a,当∠DAO=∠DOA时,2(190°-a)+a-60°=180°,解得:a=140°当∠AOD=ADO时,190°-a=a-60°,解得:a=125°,当∠OAD=∠ODA时,190°-a+2(a-60°)=180°,解得:a=110°∴α=110°,α=140°,α=125°.本题考查了等边三角形的判定与性质的运用,旋转的性质的运用,直角三角形的判定,全等三角形的判定及性质的运用,等腰三角形的判定及性质的运用,解答时证明三角形全等是关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、±18.【解析】
利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵二次三项式a2-ka+81是完全平方式,∴k=±18,故答案为:±18.此题考查完全平方式,解题关键在于掌握运算法则20、2【解析】
解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=1.∴△ABD的面积为×1×10=2.21、-1【解析】
先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【详解】∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.故答案为:-1.本题考查了函数值,解题的关键是掌握函数值的计算方法.22、;【解析】
直接进行约分化简即可.【详解】解:,故答案为:.此题考查约分,分子分母同除一个不为零的数,分式大小不变.23、(﹣1,﹣2).【解析】
1、本题主要考查的是方格纸中已知一点后直角坐标系的建立:先确定单位长度,再根据已知点的坐标确立原点,然后分别确定x轴和y轴.2、本题中只要确立了直角坐标系,点B的坐标就可以很快求出.【详解】由题意及点A的坐标可确定如图所示的直角坐标系,则B点和A点关于原点对称,所以点B的坐标是(-1,-2).本题考查了建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校德育学期工作计划模板
- 2024年企业竞业限制规范合同一
- 2024内科护士长工作计划
- 交通局国防教育工作计划
- 国资纪检监察工作计划
- 医院爱卫创卫工作计划例文书
- 2024年国际空运货物运输协议范本一
- 2024年高二数学教师下学期教学工作计划
- 五年级语文教学工作计划模板
- 婚礼项目工作计划
- 环境工程的课程设计---填料吸收塔
- 中心传动刮泥机现场施工方案
- 论农村科技创新型人才存在的问题及对策
- 中国科学技术大学抬头信纸(word版)
- 人力资源管理工作思路(共3页)
- 气管切开(一次性气切导管)护理评分标准
- 保安工作日志表
- 姜太公钓鱼的历史故事
- 数控车床实训图纸国际象棋图纸全套
- 自动控制原理部分重点整理版
- 归去来兮辞PPT课件
评论
0/150
提交评论