2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】_第1页
2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】_第2页
2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】_第3页
2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】_第4页
2024-2025学年河南省汝州数学九上开学经典模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2024-2025学年河南省汝州数学九上开学经典模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知m=30,则()A.4<m<5 B.6<m<7 C.5<m<6 D.7<m<82、(4分)向一容器内均匀注水,最后把容器注满在注水过程中,容器的水面高度与时间的关系如图所示,图中PQ为一线段,则这个容器是(

)A. B. C. D.3、(4分)若正比例函数y=kx的图象经过点(1,2),则k的值为A. B.-2 C. D.24、(4分)某校举行课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.65m,其方差分别是S甲2=3.8,S乙2=3.4,则参赛学生身高比较整齐的班级是()A.甲班 B.乙班 C.同样整齐 D.无法确定5、(4分)如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A.﹣ B.﹣ C.﹣3 D.﹣26、(4分)如图,点、在函数(,且是常数)的图像上,且点在点的左侧过点作轴,垂足为,过点作轴,垂足为,与的交点为,连结、.若和的面积分别为1和4,则的值为()A.4 B. C. D.67、(4分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是()A.AB=AC B.AB=BC C.BE平分∠ABC D.EF=CF8、(4分)若点P(m,2)与点Q(3,n)关于原点对称,则m,n的值分别为()A.,2 B.3, C., D.3,2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=6,CD=4,则EF=______.10、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.11、(4分)如图,▱ABCD的对角线AC、BD相交于点O,点E是CD的中点;若AD=8cm,则OE的长为_______.12、(4分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小红的作法如下:如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D,使点D与点C在直线AB的同侧;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是_____.13、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.三、解答题(本大题共5个小题,共48分)14、(12分)为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.15、(8分)目前由重庆市教育委员会,渝北区人们政府主办的“阳光下成长”重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:(1)m=,在扇形统计图中分数为7的圆心角度数为度.(2)补全条形统计图,各组得分的中位数是分,众数是分.(3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?16、(8分)同学们,我们以前学过完全平方公式,你一定熟悉掌握了吧!现在,我们又学习了二次根式,那么所有非负数都可以看作是一个数的平方,如,,下面我们观察:;反之,;∴;∴.仿上例,求:(1);(2)若,则、与、的关系是什么?并说明理由.17、(10分)已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A.C不重合),过点P作PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F,当点E落在线段CD上时(如图),(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;18、(10分)如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.20、(4分)如图,在轴的正半轴上,自点开始依次间隔相等的距离取点,,,,,,分别过这些点作轴的垂线,与反比例函数的图象交于点,,,,,,作,,,,,垂足分别为,,,,,,连结,,,,,得到一组,,,,,它们的面积分别记为,,,,,则_________,_________.21、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.22、(4分)如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D坐标在第四象限,那么点D的坐标是__________;23、(4分)若方程(k为常数)有两个不相等的实数根,则k取值范围为.二、解答题(本大题共3个小题,共30分)24、(8分)在平行四边形中,的垂直平分线分别交于两点,交于点,试判断四边形的形状,并说明理由.25、(10分)如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标.(2)判断以A,B,A1,B1为顶点的四边形的形状,请直接在答卷上填写答案.26、(12分)解方程:x2-3x=5x-1

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据被开方数越大算术平方根越大,可得答案.【详解】∵25<30<36,∴5<m<6,故选:C.本题考查了估算无理数的大小,解题关键在于掌握运算法则.2、C【解析】

观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案解答即可.【详解】根据图象,水面高度增加的先逐渐变快,再匀速增加;故容器从下到上,应逐渐变小,最后均匀.故选C.此题考查函数的图象,解题关键在于结合实际运用函数的图像.3、D【解析】∵正比例函数y=kx的图象经过点(1,1),∴把点(1,1)代入已知函数解析式,得k=1.故选D.4、B【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=3.8,S乙2=3.4,∴S甲2>S乙2,∴参赛学生身高比较整齐的班级是乙班,故选:B.此题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、B【解析】

直接根据勾股定理,在Rt△AOB中,,求出OB长度,再求出OC长度,结合数轴即可得出结论.【详解】解:∵在Rt△AOB中,OA=2,AB=1,

∴OB==.

∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,

∴OC=OB=,

∴点C表示的实数是-.

故选B.本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.6、D【解析】

设点M(a,0),N(0,b),然后可表示出点A、B、C的坐标,根据的面积为1可求出ab=2,根据的面积为4列方程整理,可求出k.【详解】解:设点M(a,0),N(0,b),∵AM⊥x轴,且点A在反比例函数的图象上,∴点A的坐标为(a,),∵BN⊥y轴,同理可得:B(,b),则点C(a,b),∵S△CMN=NC•MC=ab=1,∴ab=2,∵AC=−b,BC=−a,∴S△ABC=AC•BC=(−b)•(−a)=4,即,∴,解得:k=6或k=−2(舍去),故选:D.本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.7、A【解析】

当AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;【详解】解:当AB=BC时,四边形DBFE是菱形;理由:∵点D、E、F分别是边AB、AC、BC的中点,∴DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵DE=BC,EF=AB,∴DE=EF,∴四边形DBFE是菱形.故B正确,不符合题意,当BE平分∠ABC时,∴∠ABE=∠EBC∵DE∥BC,∴∠CBE=∠DEB∴∠ABE=∠DEB∴BD=DE∴四边形DBFE是菱形,故C正确,不符合题意,当EF=FC,∵BF=FC∴EF=BF,∴四边形DBFE是菱形,故D正确,不符合题意,故选A.本题考查三角形的中位线定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.8、C【解析】

根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】点P(m,2)与点Q(3,n)关于原点对称,得m=-3,n=-2,故选:C.本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

连接BD,利用勾股定理列式求出BD,再根据三角形的中位线平行于第三边并且等于第三边的一半解答.【详解】解:如图,连接BD,∵∠C=90°,BC=6,CD=4,∴BD===2,∵E、F分别为AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD=×2=.故答案为:.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记定理是解题的关键,难点在于作辅助线构造出三角形.10、70%【解析】

利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.

故答案是:70%.本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11、4cm【解析】

先说明OE是△ACD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【详解】∵▱ABCD的对角线AC、BD相交于点O,∴OA=OC,∵点E是CD的中点,∴CE=DE,∴OE是△ACD的中位线,∵AD=8cm,∴OE=AD=×8=4cm,故答案为:4cm.本题考查了平行四边形的性质,三角形中位线定理,熟练掌握相关的性质定理是解题的关键.12、到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【解析】分析:根据线段垂直平分线的作法即可得出结论.详解:如图,∵由作图可知,AC=BC=AD=BD,∴直线CD就是线段AB的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.点睛:本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.13、y=﹣1x+1.【解析】

由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.三、解答题(本大题共5个小题,共48分)14、甲、乙两种树苗各购买5000、2000株;甲种树苗至多购买2800株;最少费用为

元.【解析】

列方程求解即可;根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.【详解】设购买甲种树苗x株,则购买乙种树苗株,由题意得:解得,则答:甲、乙两种树苗各购买5000、2000株;根据题意得:解得则甲种树苗至多购买2800株设购买树苗的费用为W,根据题意得:随x的增大而减小当时,本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.15、(1)25,54;(2)如图所示见解析;6.5,6;(3)该展演活动共产生了12个一等奖.【解析】

(1)根据条形统计图和扇形统计图中的数据,即可得到总的组数,进而得出各分数对应的组数以及圆心角度数;(2)根据中位数以及众数的定义进行判断,即可得到中位数以及众数的值;(3)依据舞蹈组获得一等奖的队伍的比例,即可估计该展演活动共产生一等奖的组数.【详解】(1)10÷50%=20(组),20﹣2﹣3﹣10=5(组),m%=×100%=25%,×360°=54°,故答案为:25,54;(2)8分这一组的组数为5,如图所示:各组得分的中位数是(7+6)=6.5,分数为6分的组数最多,故众数为6;故答案为:6.5,6;(3)由题可得,×120=12(组),∴该展演活动共产生了12个一等奖.本题主要考查了条形统计图以及扇形统计图的应用,通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,从条形图可以很容易看出数据的大小,便于比较.16、(1);(2),.理由见解析.【解析】

(1)根据阅读材料即可求解;(2)根据阅读材料两边同时平方即可求解.【详解】(1);(2),;∵,∴,∴,∴,.此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则.17、(1)见解析;(2)【解析】

(1)过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.要证PB=PE,只需证到△PGB≌△PHE即可;(2)连接BD,如图2.易证△BOP≌△PFE,则有BO=PF,只需求出BO的长即可.【详解】(1)①证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB即∠BPE=90°,∴∠BPG=90°−∠GPE=∠EPH.在△PGB和△PHE中,.∴△PGB≌△PHE(ASA),∴PB=PE.②连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP=90°.∵PE⊥PB即∠BPE=90°,∴∠PBO=90∘−∠BPO=∠EPF.∵EF⊥PC即∠PFE=90°,∴∠BOP=∠PFE.在△BOP和△PFE中,,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90∘,∴BC=OB.∵BC=1,∴OB=,∴PF=.∴点PP在运动过程中,PF的长度不变,值为.此题考查正方形的性质,全等三角形的判定与性质,四边形综合题,解题关键在于作辅助线18、(1)体育场离陈欢家2.5千米,小刚在体育场锻炼了15分钟;(2)体育场离文具店1千米;(3)

小刚在文具店停留20分;(4)小强从文具店回家的平均速度是千米/分【解析】

(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;(4)用回家的路程除以回家的时间即可.【详解】(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5-2.5=1(千米);(3)由横坐标看出

小刚在文具店停留55-35=20(分);(4)小强从文具店回家的平均速度是3.5÷(125-55)=(千米/分)本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.【详解】解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,直线AC的解析式为,当时,,当时,,点A的坐标为,点C的坐标为,点D的坐标为,点B的坐标为,点的坐标为,设过点B和点的直线解析式为,,解得,,过点B和点的直线解析式为,当时,,即点P的坐标为,.故答案为.本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、【解析】

设,根据反比例函数图象上点的坐标特征和三角形面积公式得到,,,依次可得,然后代入计算即可.【详解】解:设,则,,,,,,,,.故答案为:,.本题考查了反比例函数图像上点的坐标特征和三角形面积公式,求出三角形的面积并找到规律是解答本题的关键.21、1.【解析】

首先根据求出外角度数,再利用外角和定理求出边数.【详解】∵正多边形的一个内角等于150∘∴它的外角是:180∘∴它的边数是:360∘故答案为:1.此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.22、(3,-3)【解析】

根据全等三角形的性质,三条对应边均相等,又顶点C与顶点D相对应,所以点D与C关于AB对称,即点D与点C对与AB的相对位置一样.【详解】解:∵△ABD与△ABC全等,

∴C、D关于AB对称,顶点C与顶点D相对应,即C点和D点到AB的相对位置一样.

∵由图可知,AB平行于x轴,

∴D点的横坐标与C的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论