版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省临高县美台中学数学八年级第一学期期末达标测试试题试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(
)A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN2.下列图形中AD是三角形ABC的高线的是()A. B. C. D.3.下列四个图案中,是轴对称图形的为()A. B. C. D.4.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.125.若(2x﹣y)2+M=4x2+y2,则整式M为()A.﹣4xy B.2xy C.﹣2xy D.4xy6.若不等式组的解为,则下列各式中正确的是()A. B. C. D.7.已知,,是的三条边长,则的值是()A.正数 B.负数 C.0 D.无法确定8.如图,平行四边形ABCD中,AB=6cm,AD=10cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1次 B.2次 C.3次 D.4次9.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A. B. C. D.10.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A. B.C. D.11.64的立方根是()A.4 B.±4 C.8 D.±812.下列图形中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.如图,在,,点是上一点,、分别是线段、的垂直平分线,则________.14.我们知道,实数与数轴上的点是一一对应的,任意一个实数在数轴上都能找到与之对应的点,比如我们可以在数轴上找到与数字2对应的点.(1)在如图所示的数轴上,画出一个你喜欢的无理数,并用点表示;(2)(1)中所取点表示的数字是______,相反数是_____,绝对值是______,倒数是_____,其到点5的距离是______.(3)取原点为,表示数字1的点为,将(1)中点向左平移2个单位长度,再取其关于点的对称点,求的长.15.如图,是的高,相交于,连接,下列结论:(1);(2);(3)平分,其中正确的是________.16.已知:如图,、都是等腰三角形,且,,,、相交于点,点、分别是线段、的中点.以下4个结论:①;②;③是等边三角形;④连,则平分以上四个结论中正确的是:______.(把所有正确结论的序号都填上)17.若,,则______.18.已知一次函数的图像经过点和,则_____(填“”、“”或“”).三、解答题(共78分)19.(8分)如图,在中,厘米,厘米,点为的中点,点在线段上以2厘米/秒的速度由点向点运动,同时点在线段上由点向点运动.(1)若点的运动速度与点相同,经过1秒后,与是否全等,请说明理由.(2)若点的运动速度与点不同,当点的运动速度为多少时,能够使与全等?20.(8分)某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?21.(8分)如图AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.22.(10分)如图1,在长方形中,,,点在线段上以的速度由向终点运动,同时,点在线段上由点向终点运动,它们运动的时间为.(解决问题)若点的运动速度与点的运动速度相等,当时,回答下面的问题:(1);(2)此时与是否全等,请说明理由;(3)求证:;(变式探究)若点的运动速度为,是否存在实数,使得与全等?若存在,请直接写出相应的的值;若不存在,请说明理由.23.(10分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.24.(10分)小军的爸爸和小慧的爸爸都是出租车司机,他们在每天的白天、夜间都要到同一加油站各加一次油.白天和夜间的油价不同,有时白天高,有时夜间高,但不管价格如何变化,他们两人采用固定的加油方式:小军的爸爸不论是白天还是夜间每次总是加油,小慧的爸爸则不论是白天还是夜间每次总是花元钱加油.假设某天白天油的价格为每升元,夜间油的价格为每升元.问:(1)小军的爸爸和小慧的爸爸在这天加油的平均单价各是多少?(2)谁的加油方式更合算?请你通过数学运算,给以解释说明.25.(12分)阅读下列计算过程,回答问题:解方程组解:①,得,③②③,得,.把代入①,得,,.∴该方程组的解是以上过程有两处关键性错误,第一次出错在第_______步(填序号),第二次出错在第________步(填序号),以上解法采用了__________消元法.26.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.
参考答案一、选择题(每题4分,共48分)1、D【分析】A、在△ABM和△CDN中由ASA条件可证△ABM≌△CDN,则A正确,B、在△ABM和△CDN中由SAS可证△ABM≌△CDN则B正确,C、AM∥CN,得∠A=∠C,在△ABM和△CDN中AAS△ABM≌△CDN,则C正确,D、只有在直角三角形中边边角才成立,则D不正确.【详解】A、在△ABM和△CDN中,∠M=∠N,MB=ND,∠MBA=∠NDC,△ABM≌△CDN(ASA),则A正确;B、在△ABM和△CDN中,MB=ND,∠MBA=∠NDC,AB=CD,△ABM≌△CDN(SAS),则B正确;C、AM∥CN,得∠A=∠C,在△ABM和△CDN中,∠A=∠C,∠MBA=∠NDC,MB=ND,△ABM≌△CDN(AAS),则C正确;D、AM=CN,MB=ND,∠MBA=∠NDC≠90º,则D不正确.故选择:D.【点睛】本题考查在一边与一角的条件下,添加条件问题,关键是掌握三角形全等的判定方法,结合已知与添加的条件是否符合判定定理.2、D【分析】根据三角形某一边上高的概念,逐一判断选项,即可得到答案.【详解】∵过三角形ABC的顶点A作AD⊥BC于点D,点A与点D之间的线段叫做三角形的高线,∴D符合题意,故选D.【点睛】本题主要考查三角形的高的概念,掌握“从三角形的一个顶点向它的对边所在直线作垂线,顶点到垂足之间的线段叫作三角形的高”,是解题的关键.3、B【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;
B、是轴对称图形;
C、不是轴对称图形;
D、不是轴对称图形;
故选:B【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4、C【分析】原式利用完全平方公式的结构特征求出m的值即可.【详解】∵4y2+my+9是完全平方式,∴m=±2×2×3=±1.故选:C.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.5、D【分析】根据完全平方公式,即可解答.【详解】解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式的概念:两数和(或差)的平方,等于它们的平方和,再加上(或减去)它们积的2倍.6、B【分析】根据不等式组的解集得到-a≤b,变形即可求解.【详解】∵不等式组的解为,∴-a≤b即故选B.【点睛】此题主要考查不等式组的解集,解题的关键是熟知不等式组的解集确定方法.7、B【分析】利用平方差公式将代数式分解因式,再根据三角形的三边关系即可解决问题.【详解】解:∵(a−b)2−c2=(a−b+c)(a−b−c),
∵a+c>b,b+c>a,
∴a−b+c>1,a−b−c<1,
∴(a−b)2−c2<1.
故选B.【点睛】本题考查因式分解的应用,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8、C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选C.【点睛】本题考查列了矩形的性质和平行线的性质.解决本题的关键是理解以P、D、Q、B四点组成平出四边形的次数就是Q在BC上往返运动的次数.9、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.10、A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴.故选A.考点:由实际问题抽象出分式方程.11、A【解析】试题分析:∵43=64,∴64的立方根是4,故选A考点:立方根.12、C【解析】根据轴对称图形的概念解答即可.【详解】第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形不是轴对称图形,第四个图形是轴对称图形,第五个图形不是轴对称图形.综上所述:是轴对称图形的是第一、四共2个图形.故选C.【点睛】本题考查了中对称图形以及轴对称图形,掌握中心对称图形与轴对称图形的概念是解决此类问题的关键.二、填空题(每题4分,共24分)13、【分析】根据、分别是线段、的垂直平分线,得到BE=DE,DF=CF,由等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,根据三角形的内角和得到∠B+∠C=180−∠A,根据平角的定义即可得到结论.【详解】∵、分别是线段、的垂直平分线,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵,∴∠EDB+∠FDC=180−,∴∠B+∠C=100,∴∠A=180-100=80,故答案为:80.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.14、(1)见解析;(2)(答案不唯一);(3)(答案不唯一).【分析】(1)先在数轴上以原点为起始点,以某个单位长度的长为边长画正方形,再连接正方形的对角线,以对角线为半径,原点为圆心画弧即可在数轴上得到一个无理数;(2)根据(1)中的作图可得出无理数的值,然后根据相反数,绝对值,倒数的概念以及点与点间的距离概念作答;(3)先在数轴上作出点A平移后得到的点A′,点B,点C,再利用对称性及数轴上两点间的距离的定义,可求出CO的长.【详解】解:(1)如图所示:(答案不唯一)(2)由(1)作图可知,点表示的数字是,相反数是-,绝对值是,倒数是,其到点5的距离是5-,故答案为:(答案不唯一)(3)如图,将点向左平移2个单位长度,得到点,则点表示的数字为,关于点的对称点为,点表示的数字为1,∴A′B=BC=1-()=3-,∴A′C=2A′B=6-,∴CO=OA′+A′C=+6-=4-,即CO的长为.(答案不唯一)【点睛】本题考查无理数在数轴上的表示方法,数轴上两点间的距离的求法,勾股定理以及相反数、绝对值、倒数的概念,掌握基本概念是解题的关键.15、(1)(2)(3)【分析】由HL证明Rt△BDC≌Rt△CEB可得,∠ABC=∠ACB,可得AB=AC,根据线段和差可证明AD=AE;通过证明△ADO≌△AEO可得∠DAO=∠EAO,故可得结论.【详解】∵是的高,∴∠BDC=∠CEB=90°,在Rt△BDC和Rt△CEB中,,∴Rt△BDC≌Rt△CEB,∴,,故(1)正确;∴AB=AC,∵BD=CE,∴AD=AE,故(2)正确;在Rt△ADO和Rt△AEO中,,∴Rt△ADO≌Rt△AEO,∴,∴平分,故(3)正确.故答案为:(1)(2)(3)【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,灵活运用全等三角形的判定与性质是解本题的关键.16、①②④【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;
②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°−∠DOE=180°−α,故②正确;
③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;
④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.【详解】解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE;故①正确;
②设CD与BE交于F,
∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵∠CFE=∠DFO,
∴∠DOE=∠DCE=α,
∴∠BOD=180°−∠DOE=180°−α,故②正确;
③∵△ACD≌△BCE,
∴∠CAD=∠CBE,AD=BE,AC=BC
又∵点M、N分别是线段AD、BE的中点,
∴AM=AD,BN=BE,
∴AM=BN,
在△ACM和△BCN中,
∴△ACM≌△BCN(SAS),
∴CM=CN,∠ACM=∠BCN,
又∠ACB=α,
∴∠ACM+∠MCB=α,
∴∠BCN+∠MCB=α,
∴∠MCN=α,
∴△MNC不一定是等边三角形,故③不符合题意;
④如图,过C作CG⊥BE于G,CH⊥AD于H,
∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH,CE=CD,
∴△CGE≌△CHD(AAS),
∴CH=CG,
∴OC平分∠AOE,故④正确,
故答案为①②④.【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.17、1【解析】将原式展开可得,代入求值即可.【详解】当,时,.故答案为:.【点睛】此题考查了完全平方公式,熟练掌握公式是解题的关键.18、>【分析】根据一次函数图象的增减性,结合函数图象上的两点横坐标的大小,即可得到答案.【详解】∵一次函数的解析式为:,∴y随着x的增大而增大,∵该函数图象上的两点和,∵-1<2,∴y1>y2,故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.三、解答题(共78分)19、(1)全等,见解析;(2)当的运动速度为厘米时,与全等【分析】(1)根据题意分别求得两个三角形中的边长,再利用即可判定两个三角形全等.(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度时间公式,求得点运动的时间,即可求得点的运动速度.【详解】解:(1)经过1秒后,厘米∵厘米,为的中点∴厘米∵,厘米∴厘米∴又∵∴在和中∴(2)∵点的运动速度与点不同∴又∵,∴厘米,厘米∴点,点的运动时间为秒∴点的运动速度为厘米/秒∴当的运动速度为厘米时,与全等.【点睛】本题考查了等腰三角形的性质和全等三角形的判定和性质.涉及到了动点问题,题目较好但难度较大.20、(1)5元笔记本买了25本,8元笔记本买了15本(2)不可能找回68元,理由见解析.【解析】(1)设5元、8元的笔记本分别买本,本,依题意,得:,解得:.答:5元和8元笔记本分别买了25本和15本.(2)设买本5元的笔记本,则买本8元的笔记本.依题意,得:,解得.因是正整数,所以不合题意,应舍去,故不能找回68元.【点睛】本题难度较低,主要考查学生对二元一次方程组解决实际应用的能力。为中考常考题型,要求学生牢固掌握。21、(1)见解析;(2)见解析;(3)【分析】(1)由ASA即可得出结论;(2)先证明四边形ABCD是平行四边形,再证明AD=AB,即可得出结论;(3)由菱形的性质得出AC⊥BD,证明四边形ACED是平行四边形,得出AC=DE=2,AD=EC,由菱形的性质得出EC=CB=AB=2,得出EB=4,由勾股定理得BD═,即可得出答案.【详解】(1)∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.22、解决问题(1)1;(2)全等;(3)见解析;变式探究:1或.【分析】解决问题(1)当t=1时,AP的长=速度×时间;(2)算出三角形的边,根据全等三角形的判定方法判定;(3)利用同角的余角相等证明∠DPQ=90°;变式探究若与全等,则有两种情况:①≌②≌,分别假设两种情况成立,利用对应边相等求出t值.【详解】解:解决问题(1)∵t=1,点P的运动速度为,∴AP=1×1=1cm;(2)全等,理由是:当t=1时,可知AP=1,BQ=1,又∵AB=4,BC=3,∴PB=3,在△ADP与△BPQ中,,∴△ADP≌△BPQ(SAS)(3)∵△ADP≌△BPQ,∴∠APD=∠PQB,∵∠PQB+∠QPB=90°,∴∠APD+∠QPB=90°,∴∠DPQ=90°,即DP⊥PQ.变式探究①若≌,则AP=BQ,即1×t=x×t,x=1;②若≌,AP=BP,即点P为AB中点,此时AP=2,t=2÷1=2s,AD=BQ=3,∴x=3÷2=cm/s.综上:当与全等时,x的取值为1或.【点睛】本题考查了全等三角形的判定和性质,注意在运动中对三角形全等进行分类讨论,从而得出不同情况下的点Q速度.23、(1)商场计划购进甲种手机20部,乙种手机30部.(2)当该商场购进甲种手机11部,乙种手机40部时,全部销售后获利最大.最大毛利润为2.41万元.【分析】(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为11.1万元和两种手机的销售利润为2.1万元建立方程组求出其解即可.(2)设甲种手机减少a部,则乙种手机增加2a部,表示出购买的总资金,由总资金部超过16万元建立不等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院后勤服务合同规范
- 体育场馆混凝土路面施工合同
- 机械设备租赁服务合同签订要点
- 企事业单位车辆租赁协议
- 信托公司合同
- 展览馆门卫安全协议
- 知识产权风险管理指南
- 传媒科技公司税务申报指南
- 礼拜堂租赁合同
- 招投标中心项目招标问题总结
- 高中化学趣味化学知识竞赛课件
- 新课程标准解决问题课标要求及实施策略课件
- 高中英语选修一(人教版)2-1Looking into the Future 教学课件
- 电动汽车充电桩申请安装备案表
- 想起这件事-我就-课件
- 【核心素养目标】浙教版五上《劳动》项目二 任务二《制作七巧板》教学设计
- 云南省保山市各县区乡镇行政村村庄村名居民村民委员会明细
- 承台基础模板施工方案完整
- 社会主义从空想到科学的发展第二章课件
- 小学二年级上册《道德与法治》教材解读分析
- 我不生气了-完整版课件
评论
0/150
提交评论