2025届湖南省长沙市博才实验中学数学八上期末预测试题含解析_第1页
2025届湖南省长沙市博才实验中学数学八上期末预测试题含解析_第2页
2025届湖南省长沙市博才实验中学数学八上期末预测试题含解析_第3页
2025届湖南省长沙市博才实验中学数学八上期末预测试题含解析_第4页
2025届湖南省长沙市博才实验中学数学八上期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省长沙市博才实验中学数学八上期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,152.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+23.已知,,则与的大小关系为()A. B. C. D.不能确定4.如图所示,已知AB∥CD,∠A=50°,∠C=∠E.则∠C等于(

)A.20° B.25° C.30° D.40°5.下列图形中,是轴对称图形的是()A. B.C. D.6.下列条件中,能判定△ABC为直角三角形的是().A.∠A=2∠B-3∠C B.∠A+∠B=2∠C C.∠A-∠B=30° D.∠A=∠B=∠C7.下列分解因式正确的是()A. B.C. D.8.下面计算正确的是()A. B. C. D.9.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=-2x-24(0<x<12) D.y=-x-12(0<x<24)10.下列图形既是中心对称又是轴对称图形的是()A.平行四边形和矩形 B.矩形和菱形C.正三角形和正方形 D.平行四边形和正方形11.已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C.3 D.412.9的算术平方根是()A.3 B.-3 C. D.以上都对二、填空题(每题4分,共24分)13.等腰三角形的一个外角是,则它底角的度数是______.14.某班数学兴趣小组对不等式组,讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是____.15.长、宽分别为、的长方形,它的周长为16,面积为10,则的值为____.16.36的平方根是____,的算术平方根是___,的绝对值是___.17.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.18.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为_____.三、解答题(共78分)19.(8分)如图,已如是等边三角形,于点,于点,,求证:(1)≌;(2)是的垂直平分线.20.(8分)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB,∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)连接BD,求证:△ABD是等边三角形;(2)试猜想:线段AE、AF与AD之间有怎样的数量关系?并给以证明.21.(8分)老师在黑板上书写了一个式子的正确计算结果随后用手遮住了原式的一部分,如图.(1)求被手遮住部分的式子(最简形式);(2)原式的计算结果能等于一1吗?请说明理由.22.(10分)已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=1.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.23.(10分)某业主贷款6.6万元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其它费用是售价的10%.若每个月能生产、销售6000个产品,问至少几个月后能赚回这台机器的贷款?(用列不等式的方法解决)24.(10分)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.(12分)阅读与思考x2+(p+q)x+pq型式子的因式分解x2+(p+q)x+pq型式子是数学学习中常见的一类多项式,如何将这种类型的式子分解因式呢?我们通过学习,利用多项式的乘法法则可知:(x+p)(x+q)=x2+(p+q)x+pq,因式分解是整式乘法相反方向的变形,利用这种关系可得x2+(p+q)x+pq=(x+p)(x+q).利用这个结果可以将某些二次项系数是1的二次三项式分解因式,例如,将x2﹣x﹣6分解因式.这个式子的二次项系数是1,常数项﹣6=2×(﹣3),一次项系数﹣1=2+(﹣3),因此这是一个x2+(p+q)x+pq型的式子.所以x2﹣x﹣6=(x+2)(x﹣3).上述过程可用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数,如图所示.这样我们也可以得到x2﹣x﹣6=(x+2)(x﹣3).这种分解二次三项式的方法叫“十字相乘法”.请同学们认真观察,分析理解后,解答下列问题:(1)分解因式:y2﹣2y﹣1.(2)若x2+mx﹣12(m为常数)可分解为两个一次因式的积,请直接写出整数m的所有可能值.26.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB//x轴,求t的值;(2)当t=3时,坐标平面内有一点M(不与A重合),使得以M、P、B为顶点的三角形和△ABP全等,请求出点M的坐标;

参考答案一、选择题(每题4分,共48分)1、D【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.2、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.3、A【分析】通过“分母有理化”对进行化简,进而比较大小,即可得到答案.【详解】∵=,,∴.故选A.【点睛】本题主要考查二次根式的化简,掌握二次根式的分母有理化,是解题的关键.4、B【分析】根据AB∥CD,∠A=50°,所以∠A=∠AOC.又因为∠C=∠E,∠AOC是外角,所以可求得∠C.【详解】解:∵AB∥CD,∠A=50°,∴∠A=∠AOC(内错角相等),又∵∠C=∠E,∠AOC是外角,∴∠C=50°÷2=25°.故选B.5、D【分析】根据轴对称图形的概念求解即可.【详解】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.【点睛】本题考查轴对称图形的判断,关键在于熟记轴对称图形的概念.6、D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=°,所以A选项错误;

B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;

C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;

D、∠A+∠B+∠C=180°,而∠A=∠B=∠C,则∠C=90°,所以D选项正确.

故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.7、C【解析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.=(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.8、B【分析】根据二次根式的混合运算方法,分别进行运算即可.【详解】解:A.3+不是同类项无法进行运算,故A选项错误;B.=3,故B选项正确;C.,故C选项错误;D.,故D选项错误;故选B.【点睛】考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9、B【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围.【详解】解:由题意得:2y+x=24,

故可得:y=x+12(0<x<24).

故选:B.【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.10、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、矩形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误;B、矩形、菱形既是轴对称图形,也是中心对称图形.故正确;C、等边三角形是轴对称图形,不是中心对称图形.故错误;D、正方形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11、D【分析】根据已知将代入二元一次方程组得到m,n的值,即可求得m-n的值.【详解】∵是二元一次方程组∴∴m=1,n=-3m-n=4故选:D【点睛】本题考查了二元一次方程组解的定义,已知二元一次方程组的解,可求得方程组中的参数.12、A【分析】根据算术平方根的定义解答即可.【详解】∵,∴9的算术平方根是3,故选:A.【点睛】此题考查算术平方根的定义:如果一个正数的平方等于a,那么这个正数即是a的算术平方根,熟记定义是解题的关键.二、填空题(每题4分,共24分)13、42.5°【分析】根据等腰三角形的一个外角是可以得到一个内角是,三角形内角和,而只有可能是顶角,据此可以计算底角.【详解】解:等腰三角形的一个外角是.等腰三角形的一个内角是.如果是底角,那么,三角形内角和超过.只有可能是顶角.它底角为:.故答案:.【点睛】本题主要考查等腰三角形的性质,灵活运用三角形内角和是解题的关键.14、①,②,④.【解析】(1)把a=5代入不等式组,解不等式组的解集与选项解集对照即可解答;(2)把a=2代入不等式组,解不等式组,根据大大小小无解从而确定改选项正确;(3)根据不等式组无解,确定a的取值范围为a≤3;(4)根据不等式组只有两个整数解,可知这两个整数解为:x=3,x=4,所以x的取值范围是:3<x≤5.1.【详解】解:①a=5,则不等式组的解集为3<x≤5,所以①正确;②a=2,x的取值范围是x>3和x≤2,无解,所以②正确;③不等式组无解,则a的取值范围为a≤3,而不是a<3,所以③错误;④若a=5.1则,x的取值范围是:3<x≤5.1,整数解为:x=4,x=5,共有两个解.故答案为①,②,④.【点睛】本题考查一元一次不等式的解法、整数解及解集判定,解题关键是熟练掌握同大取大、同小取小、大小小大中间找、大大小小找不到.15、80【解析】∵长、宽分别为a、b的矩形,它的周长为16,面积为10,∴a+b=16÷2=8,ab=10,∴a²b+ab²=ab(a+b)=10×8=80,故答案为80.16、±62【分析】根据平方根、算术平方根、绝对值的定义求解即可.【详解】由题意,得36的平方根是±6;的算术平方根是2;的绝对值是;故答案为:±6;2;.【点睛】此题主要考查对平方根、算术平方根、绝对值的应用,熟练掌握,即可解题.17、【详解】试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-118、12【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.【详解】作C关于AB的对称点E,连接ED,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE,∴△ACE为等边三角形,∴CP+PD=DP+PE为E与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析【分析】(1)已知BE=CF,∠EBD=∠FCD,∠BED=∠CFD,根据三角形全等的判定定理可得;(2)通过证明△ABD≌△ACD得BD=CD,∠ADB=∠ADC=90°,推出是的垂直平分线.【详解】(1)∵是等边三角形,∴,∵,,∴,∵,∴≌.(2)∵≌,∴,∵是等边三角形,∴,∴点,均在的垂直平分线上,∴是的垂直平分线.【点睛】本题主要考查了三角形全等的判定,关键是找边角关系,选择合适的判定定理证明,另外及垂直平分线判定需要满足两条,一平分,二垂直.20、(1)详见解析;(2)AE+AF=AD.证明见解析.【分析】(1)连接BD由等腰三角形的性质和已知条件得出∠BAD=∠DAC=,再由AD=AB,即可得出结论;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE≌△ADF,得出AF=BE,即可求解.【详解】(1)证明:连接BD,∵AB=AC,AD⊥BC,∴∠BAD=∠DAC=∠BAC,∵∠BAC=120°,∴,∵AD=AB,∴△ABD是等边三角形;(2)猜想:AE+AF=AD,理由如下:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,AB=BD=AD∵∠EDF=60°,∴∠BDE=∠ADF,在△BDE与△ADF中,∴△BDE≌△ADF(ASA),∴AF=BE,∴AB=BE+AE=AF+AE=AD【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质,熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.21、(1);(2)不能,理由见解析【分析】(1)设被手遮住部分的式子为A,代入求值即可;(2)不能,根据分式有意义的条件证明即可.【详解】(1)设被手遮住部分的式子为A,由题意得(2)不能等于-1.由题意可得:若解得:当时,原式的除式为0,无意义.故原式的计算结果不能等于.【点睛】本题考查了分式的混合运算,掌握分式混合运算的法则、分式有意义的条件是解题的关键.22、(1)证明见解析(2)答案见解析(3)8【解析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM与NE交于K,则∠MKN=181°﹣2∠ONE=91°﹣∠NEA,即2∠ONE﹣∠NEA=91°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=1∴|a﹣b|+(b﹣4)2=1∵|a﹣b|≥1,(b﹣4)2≥1∴|a﹣b|=1,(b﹣4)2=1∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH=∠OAE在△AOE与△BAH中,∴△AOE≌△BAH(ASA)∴AH=OE在△ONE和△AMH中,∴△ONE≌△AMH(SAS)∴∠AMH=∠ONE设BM与NE交于K∴∠MKN=181°﹣2∠ONE=91°﹣∠NEA∴2∠ONE﹣∠NEA=91°(3)过H作HM⊥OF,HN⊥EF于M、N可证:△FMH≌△FNH(SAS)∴FM=FN同理:NE=EK∴OE+OF﹣EF=2HK过A作AP⊥y轴于P,AQ⊥x轴于Q可证:△APF≌△AQE(SAS)∴PF=EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.23、至少5个月后该业主能赚回这台机器的贷款.【分析】设需要个月能赚回这台机器的贷款,根据题意列出不等式求解即可.【详解】解:设需要个月能赚回这台机器的贷款,根据题意,得,解得:,答:至少5个月后该业主能赚回这台机器的贷款.【点睛】本题是对不等式知识的考查,准确根据题意列出不等式是解决本题的关键.24、(1)普通列车的行驶路程为520千米;(2)普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.【解析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;

(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.【详解】(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时,则题意得:,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=30

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论