版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古乌海市第四中学2025届数学八年级第一学期期末联考试题末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知三角形两边的长分别是5和11,则此三角形第三边的长可能是()A.5 B.15 C.3 D.162.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8 B.10 C.12 D.143.小明不慎将一个三角形玻璃摔碎成如图所示的四块,现要到玻璃店配一个与原来一样大小的三角形玻璃,你认为应带去的一块是()A.第1块 B.第2块 C.第3块 D.第4块4.分式与的最简公分母是A.ab B.3ab C. D.5.下列计算正确的是()A.(a2)3=a5 B.(15x2y﹣10xy2)÷5xy=3x﹣2yC.10ab3÷(﹣5ab)=﹣2ab2 D.a﹣2b3•(a2b﹣1)﹣2=6.如图,△ABC中,AB=AC,∠C=72°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.82° B.72° C.60° D.36°7.下列计算中正确是()A. B.C. D.8.若,的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.9.在平面直角坐标系中,点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.下列说法正确的是()A.代数式是分式 B.分式中,都扩大3倍,分式的值不变C.分式有意义 D.分式是最简分式二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,一次函数y=2x﹣4的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是_____.12.如图,是的中线,,,则和的周长之差是.13.如图,点E在正方形ABCD内,且∠AEB=90°,AE=5,BE=12,则图中阴影部分的面积是___________.14.近似数2.019精确到百分位的结果是_____.15.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于_______.16.如图,等边的边长为2,则点B的坐标为_____.17.如图,在平面直角坐标系中,、、、…、均为等腰直角三角形,且,点、、、……、和点、、、……、分别在正比例函数和的图象上,且点、、、……、的横坐标分别为1,2,3…,线段、、、…、均与轴平行.按照图中所反映的规律,则的顶点的坐标是_____.(其中为正整数)18.下列事件:①射击1次,中靶;②打开电视,正在播广告;③地球上,太阳东升西落.其中必然事件的有_____.(只填序号).三、解答题(共66分)19.(10分)在中,,,点是上的一点,连接,作交于点.(1)如图1,当时,求证:;(2)如图2,作于点,当时,求证:;(3)在(2)的条件下,若,求的值.20.(6分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点、、在小正方形的顶点上.(1)在图中画出与关于直线成轴对称的;(2)在直线上找一点,使的值最小;(3)若是以为腰的等腰三角形,点在图中小正方形的顶点上.这样的点共有_______个.(标出位置)21.(6分)如图,中,,点在上,点在上,于点于点,且.求证:.22.(8分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.23.(8分)如图,在平面直角坐标系中,点为正半轴上一点,过点的直线轴,且直线分别与反比例函数和的图像交于两点,.求的值;当时,求直线的解析式;在的条件下,若轴上有一点,使得为等腰三角形,请直接写出所有满足条件的点的坐标.24.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴于,且面积为.(1)求点的坐标及直线的解析式.(2)如图1设点为线段中点,点为轴上一动点,连接,以为边向右侧作以为直角顶点的等腰,在点运动过程中,当点落在直线上时,求点的坐标.(3)如图2,若为线段上一点,且满足,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.25.(10分)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?26.(10分)如图,,求的长,
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据三角形的三边关系,求出第三边的长的取值范围,即可得出结论.【详解】解:∵三角形两边的长分别是5和11,∴11-5<第三边的长<11+5解得:6<第三边的长<16由各选项可知,符合此范围的选项只有B故选B.【点睛】此题考查的是根据三角形两边的长,求第三边的长的取值范围,掌握三角形的三边关系是解决此题的关键.2、B【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选:B.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的特点及周长的定义.3、B【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选B.【点睛】此题考查全等三角形的应用,解题关键在于掌握判定定理.4、C【分析】确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】∵分式与的分母分别是a2b、3ab2,∴最简公分母是3a2b2.故选C.【点睛】本题考查了最简公分母的定义,熟练掌握最简公分母的定义是解答本题的关键.通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.5、B【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【详解】A、(a2)3=a6,故A错误;B、(15x2y﹣10xy2)÷5xy=3x﹣2y,故B正确;C、10ab3÷(﹣5ab)=﹣2b2,故C错误;D、a﹣2b3•(a2b﹣1)﹣2=,故D错误;故选B.【点睛】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键.6、B【分析】先根据AB=AC,∠C的度数,求出∠ABC的度数,再由垂直平分线的性质求出∠ABD的度数,再由三角形内角与外角的性质解答即可.【详解】解:∵AB=AC,∠C=72°,
∴∠ABC=∠C=72°,∴∠A=36°
∵DE垂直平分AB,
∴∠A=∠ABD=36°,
∴∠BDC=∠A+∠ABD=36°+36°=72°.
故选:B.【点睛】点评:本题考查的是线段垂直平分线的性质及三角形内角和定理、等腰三角形的性质,解答此题的关键是熟知线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.7、A【分析】根据二次根式的除法法则对A进行判断;根据二次根式的性质对B、C、D进行判断.【详解】A、原式=,所以A选项正确;
B、原式=,所以B选项错误;
C、原式=,所以C选项错误;
D、原式=,所以D选项错误.
故选:A.【点睛】此题考查二次根式的混合运算,解题关键在于先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.8、D【分析】分别写出、都扩大3倍后的分式,再化简与原式比较,即可选择.【详解】当、都扩大3倍时,A、,故A错误.B、,故B错误.C、,故C错误.D、,故D正确.故选D.【点睛】本题考查分式的基本性质,解题关键是熟练化简分式.9、B【解析】根据平面直角坐标系中点的坐标的符号解答即可.【详解】∵点横坐标是,纵坐标是,
∴点在第二象限.
故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、D【解析】根据分式的定义及性质依次判断即可求解.【详解】A.代数式是整式,故错误;B.分式中,都扩大3倍后为,分式的值扩大3倍,故错误;C.当x=±1时,分式无意义,故错误;D.分式是最简分式,正确,故选D.【点睛】此题主要考查分式的定义及性质,解题的关键是熟知分式的特点与性质.二、填空题(每小题3分,共24分)11、y=x﹣1【分析】根据已知条件得到A(2,0),B(0,﹣1),求得OA=2,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=2,求得F(6,﹣2),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.【详解】解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=2,∴A(2,0),B(0,﹣1),∴OA=2,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=15°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△FAE(AAS),∴AE=OB=1,EF=OA=2,∴F(6,﹣2),设直线BC的函数表达式为:y=kx+b,∴,解得,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.12、1【分析】根据中线可得AD=CD,周长之差就是AB与BC的差,计算即可.【详解】∵BD是△ABC的中线,∴AD=CD,∴△ABD和△CBD的周长之差就是AB与BC的差,即AB-BC=1cm,故答案为:1.【点睛】本题考查三角形中线相关的计算,关键在于熟悉中线的性质.13、139【解析】利用勾股定理可求出正方形的边长,根据S阴影=S正方形ABCD-S△AEB即可得答案.【详解】∵AE=5,BE=12,∠AEB=90°,∴AB==13,∴S阴影=S正方形ABCD-S△AEB=13×13-×5×12=139.故答案为:139【点睛】本题考查勾股定理,直角三角形中,斜边的平分等于两条直角边的平方的和,熟练掌握勾股定理是解题关键.14、2.1【分析】根据四舍五入法可以解答本题.【详解】2.019≈2.1(精确到百分位),故答案为2.1.【点睛】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.15、1.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【详解】∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得.故答案是:1.16、.【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】解:如图,过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,在Rt△BDO中,由勾股定理得:.∴点B的坐标为:.故答案为:.【点睛】本题考查了等边三角形的性质,坐标与图形和勾股定理.能正确作出辅助线,构造Rt△BDO是解决此题的关键.17、【分析】当x=1代入和中,求出A1,B1的坐标,再由△A1B1C1为等腰直角三角形,求出C1的坐标,同理求出C2,C3,C4的坐标,找到规律,即可求出的顶点的坐标.【详解】当x=1代入和中,得:,,∴,,∴,∵△A1B1C1为等腰直角三角形,∴C1的横坐标为,C1的纵坐标为,∴C1的坐标为;当x=2代入和中,得:,,∴,,∴,∵△A2B2C2为等腰直角三角形,∴C2的横坐标为,C2的纵坐标为,∴C2的坐标为;同理,可得C3的坐标为;C4的坐标为;∴的顶点的坐标是,故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确求出C1、C2、C3、C4的坐标找到规律是解题的关键.18、③【分析】根据必然事件的概念,逐一判断,即可得到答案.【详解】①射击1次,中靶,是随机事件,不合题意;②打开电视,正在播广告,是随机事件,不合题意;③地球上,太阳东升西落,是必然事件,符合题意.故答案为:③.【点睛】本题主要考查必然事件的概念,掌握必然事件的概念,是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)1.【分析】(1)利用三角形外角的性质证得,从而证得,即可证明结论;(2)利用三角形外角的性质证得,继而求得,从而证得结论;(3)作出如图辅助线,利用证得,利用等腰三角形三线合一的性质求得,用面积法求得,从而证得结论.【详解】(1)∵,∴,∵,,,∴,∵,∴,∴,∵,∴;(2)∵,,∴,∵,,,∴,∵,∴,∵,∴,∵,∴,∵,,∴,∵,∴,∴,∵,∴;(3)过点作交延长线于点,过点作于点,过点作于点,∴,∵,,∴,∵,∴,∴,∵,,∴,∴,∵,∴,∵,∴,∴,∴,∵,∴,∵,,∴,∵,∴,∴【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.20、(1)见解析;(2)见解析;(1)见解析,1【分析】(1)先找到点A、B、C关于直线的对称点A、B′、C′,然后连接AB′、B′C′,AC′即可;(2)连接B′C交直线l于点P,连接PB即可;(1)根据等腰三角形的定义分别以C、A为圆心,AC的长为半径作圆,即可得出结论.【详解】解:(1)先找到点A、B、C关于直线的对称点A、B′、C′,然后连接AB′、B′C′,AC′,如图所示,△AB′C′即为所求.(2)连接B′C交直线l于点P,连接PB,根据两点之间线段最短可得此时最小,如图所示,点P即为所求;(1)以C为圆心,AC的长为半径作圆,此时有M1、M2,两个点符合题意;以A为圆心,AC的长为半径作圆,此时有M1符合题意;如图所示,这样的点M共有1个,故答案为:1.【点睛】此题考查的是作已知图形的轴对称图形、轴对称性质的应用和作等腰三角形,掌握轴对称的性质和等腰三角形的定义是解决此题的关键.21、见解析【分析】根据三角形内角和相等得到∠1=∠B,再由∠1=∠2得出∠2=∠B,推出∠2+∠BDG=90°,即∠CDB=90°,从而得出∠ADC=90°.【详解】解:如图,∵EF⊥AB,DG⊥BC,∴∠AEF=∠DGB=90°,∵∠ACB=90°,∠A=∠A,∴∠1=∠B,又∵∠1=∠2,∴∠B=∠2,∵∠B+∠BDG=90°,∴∠2+∠BDG=90°,∴∠CDB=90°,∴∠ADC=90°.【点睛】本题考查了三角形内角和定理,余角的性质,解题的关键是找到∠B,通过∠1、∠2与∠B的关系推出结论.22、(1);(2);(3)或;(4)t最小值为秒【分析】(1)把B(2,m)代入直线l解析式可求出m的值,即可得B点坐标,设直线BC的解析式为y=kx+b,把B、C两点坐标代入可求得k、m的值,即可的直线BC的解析式;(2)过点O作交BC于点D,可知S△ABC=S△ABD,,联立直线BC与OD的解析式解得交点D的坐标即可;(3)分别讨论P点在y轴的负半轴和正半轴时两种情况,①P点在y轴的负半轴时,作于点N,可证明△AOP△PNM1,设OP=NM1=m,ON=m-2,则M1的坐标为(m,2-m),代入BC解析式即可求出m的值,进而可得M1坐标;②当P点在y轴正半轴时,同①解法可求出M2的坐标,综上即可得答案;(4)作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,可求出AG、AQ、BQ的长,根据时间t=+=BE+EK≥BT,利用面积法求出BT的值即可.【详解】(1)解:将点B(2,m)代入得m=3∴设直线BC解析式为得到∴∴直线BC解析式为(2)如图,过点O作交BC于点D∴S△ABC=S△ABD,∴直线OD的解析式为y=x,∴解得(3)①如图,当P点在y轴负半轴时,作于点N,∵直线AB与x轴相交于点A,∴点A坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM1=90°∴∠PAO=∠PNM1,又∵AP=PM1,∠POA=∠PNM1=90°∴△AOP△PNM1,∴PN=OA=2,设OP=NM1=m,ON=m-2∴解得∴②如图,作于点H可证明△AOP△PHM2设HM2=n,OH=n-2∴解得∴M2(,)∴综上所述或M2(,).(4)如图,作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,∵∠CAQ=45°BG⊥x轴,B(2,3)∴AG=4,∴AQ=4,BQ=7,t==BE+EK≥BT,由面积法可得:∴×4×BT=×7×4,∴BT=因此t最小值为.【点睛】本题考查一次函数的几何应用,待定系数法求一次函数解析式及面积公式的应用,熟练掌握相关知识是解题关键.23、(1)k=﹣20;(2)y=﹣x;(3)点N的坐标为(,0)或(,0)或(﹣,0)或(,0).【分析】(1)由结合反比例函数k的几何意义可得+4=14,进一步即可求出结果;(2)由题意可得MO=MQ,于是可设点Q(a,﹣a),再利用待定系数法解答即可;(3)先求出点Q的坐标和OQ的长,然后分三种情况:①若OQ=ON,可直接写出点N的坐标;②若QO=QN,根据等腰三角形的性质解答;③若NO=NQ,根据两点间的距离解答.【详解】解:(1)∵,S△POM=,S△QOM=,∴+4=14,解得,∵k<0,∴k=﹣20;(2)∵,轴,∴,∴MO=MQ,设点Q(a,﹣a),直线OQ的解析式为y=mx,把点Q的坐标代入得:﹣a=ma,解得:m=﹣1,∴直线OQ的解析式为y=﹣x;(3)∵点Q(a,﹣a)在上,∴,解得(负值舍去),∴点Q的坐标为,则,若为等腰三角形,可分三种情况:①若OQ=ON=,则点N的坐标是(,0)或(﹣,0);②若QO=QN,则NO=2OM=,∴点N的坐标是(,0);③若NO=NQ,设点N坐标为(n,0),则,解得,∴点N的坐标是(,0);综上,满足条件的点N的坐标为(,0)或(,0)或(﹣,0)或(,0).【点睛】本题考查了反比例函数系数k的几何意义、等腰三角形的性质、勾股定理以及两点间的距离等知识,具有一定的综合性,熟练掌握相关知识是解题的关键.24、(1),直线的解析式为.(2)坐标为或.(3)存在,满足条件的点的坐标为或或.【分析】(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解答;(2)分两种情况:①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,,求出点;②当时,如图,同法可得,再将解代入直线解析式求出n值即可解答;(3)利用三角形面积公式求出点M的坐标,求出直线AM的解析式,作BE∥OC交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,再根据对称性可得即可解答.【详解】(1)直线与轴交于点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 店面租赁公版合同范本
- 开店买二手房合同范本
- 彩钢材料配送合同范本
- 宾馆物资团购合同范本
- 实验用兔采购合同范本
- 房产公司劳务合同范本
- 湖南省公务员考试常识判断专项练习题及答案1套
- 汽车销售合同(2025年新能源车推广)
- 2026年杨凌职业技术学院单招综合素质考试模拟试题附答案详解
- 2026年新疆科技职业技术学院单招综合素质考试参考题库附答案详解
- 血液净化中心(透析室)年度述职报告
- 教科版(2024)二年级科学上册期末综合质量调研卷(含答案)
- 2025年合肥安徽潜晟城市运营管理有限公司公开招聘工作人员考试题库必考题
- 新生儿气道管理临床实践指南(2025版)
- 酒吧消防安培训
- 养老院消防培训方案2025年课件
- Smaart7产品使用说明手册
- 包装班组年终总结
- 瓷砖工程验收课程
- 2025 小学二年级数学上册乘法口诀对口令练习课件
- 专升本旅游管理专业2025年旅游学概论试卷(含答案)
评论
0/150
提交评论