2025届辽宁省北票市龙潭乡初级中学数学八年级第一学期期末质量跟踪监视模拟试题含解析_第1页
2025届辽宁省北票市龙潭乡初级中学数学八年级第一学期期末质量跟踪监视模拟试题含解析_第2页
2025届辽宁省北票市龙潭乡初级中学数学八年级第一学期期末质量跟踪监视模拟试题含解析_第3页
2025届辽宁省北票市龙潭乡初级中学数学八年级第一学期期末质量跟踪监视模拟试题含解析_第4页
2025届辽宁省北票市龙潭乡初级中学数学八年级第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届辽宁省北票市龙潭乡初级中学数学八年级第一学期期末质量跟踪监视模拟试题质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.设等式在实数范围内成立,其中a、x、y是两两不同的实数,则的值是()A.3 B. C.2 D.2.若=,把实数在数轴上对应的点的位置表示出来,可能正确的是()A. B.C. D.3.在实数0,,-2,中,其中最小的实数是()A. B. C. D.4.如图,≌,下列结论正确的是()A. B. C. D.5.一个等腰三角形一边长等于6,一边长等于5,则它周长的为()A.16 B.17 C.18 D.16或176.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF7.长度为下列三个数据的三条线段,能组成直角三角形的是()A.1,2,3 B.3,5,7 C.1,,3 D.1,,8.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A.10° B.15° C.20° D.25°9.在平面直角坐标系中,点A(3,1)关于原点对称的点的坐标是()A.(1,3) B.(﹣1,﹣3) C.(﹣3,﹣1) D.(﹣3,1)10.下列计算正确的是()A. B.C. D.11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.1112.下列运算正确的是()A.a+a=a2 B.a6÷a3=a2 C.(a+b)2=a2+b2 D.(ab3)2=a2b6二、填空题(每题4分,共24分)13.如图,在中,,,,分别以点,为圆心,大于的长为半径画弧,两弧交点分别为点,,过,两点作直线交于点,则的长是_______.14.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.15.点P(3,2)关于y轴的对称点的坐标是_________.16.如图,在中,,的垂直平分线交于点,交于点.若,的度数为________.17.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.18.如图,平行四边形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DE+DF的长度为_________.三、解答题(共78分)19.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.20.(8分)如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?21.(8分)已知等腰三角形ABC的底边长BC=20cm,D是AC上的一点,且BD=16cm,CD=12cm.(1)求证:BD⊥AC;(2)求△ABC的面积.22.(10分)如图,某中学校园内有一块长为米,宽为米的长方形地块.学校计划在中间留一块边长为米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含的代数式表示)(2)当时,求绿化的面积.23.(10分)如图AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.24.(10分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?25.(12分)如图,函数y=2x+4的图象与正比例函数的图象相交于点A(﹣1,2),且与x轴、y轴分别交于点B、C.(1)求正比例函数y=kx的解析式;(2)求两个函数图象与y轴围成图形的面积.26.(模型建立)(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.(模型运用)(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.(模型迁移)如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据根号下的数要是非负数,得到a(x-a)≥1,a(y-a)≥1,x-a≥1,a-y≥1,推出a≥1,a≤1,得到a=1,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥1,a(y-a)≥1,x-a≥1,a-y≥1,a(x-a)≥1和x-a≥1可以得到a≥1,a(y-a)≥1和a-y≥1可以得到a≤1,所以a只能等于1,代入等式得=1,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>1,y<1.将x=-y代入原式得:原式=.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.2、C【分析】先根据实数意义判断a的取值范围,再确定答案.【详解】因为2=<=<=3所以a更接近3所以把实数在数轴上对应的点的位置表示出来,只有C正确故选:C【点睛】考核知识点:实数和数轴上的点.确定无理数的取值范围是关键.3、A【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小,把这四个数从小到大排列,即可得出答案.【详解】∵实数0,,-2,中,,∴其中最小的实数为-2;

故选:A.【点睛】此题考查了实数的大小比较,用到的知识点是正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.4、B【分析】全等三角形的性质:对应边相等,对应角相等,据此逐一判断即可的答案.【详解】∵△ABC≌△DEF,∴AB=DE,∠B=∠DEF,∠ACB=∠F,故A、C、D选项错误,不符合题意,∵△ABC≌△DEF,∴BC=EF,∴BC-CE=EF-CE,∴BE=CF,故B选项正确,符合题意,故选:B.【点睛】本题考查全等三角形的性质,正确找出对应边与对应角是解题关键.5、D【分析】题目给出等腰三角形有两条边长为6和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况讨论:①6为腰,5为底.∵5+6=11>6,∴5,6,6,能够成三角形,周长为:5+6+6=2;②5为腰,6为底.∵5+5=10>6,∴5,5,6,能够成三角形,周长为:5+5+6=1.综上所述:周长为1或2.故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答本题的关键.6、B【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.7、D【分析】根据勾股定理的逆定理逐项判断即可.【详解】由直角三角形的性质知,三边中的最长边为斜边A、,不满足勾股定理的逆定理,此项不符题意B、,不满足勾股定理的逆定理,此项不符题意C、,不满足勾股定理的逆定理,此项不符题意D、,满足勾股定理的逆定理,此项符合题意故选:D.【点睛】本题考查了勾股定理的逆定理的应用,熟记勾股定理的逆定理是解题关键.8、C【详解】解:∵D为BC的中点,AD⊥BC,∴EB=EC,AB=AC∴∠EBD=∠ECD,∠ABC=∠ACD.又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选C.【点睛】本题考查等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系.9、C【分析】直接利用关于原点对称点的性质得出答案.【详解】解:∵关于原点对称的点的横、纵坐标均互为相反数,∴点A(3,1)关于原点对称的点的坐标是:(﹣3,﹣1).故选:C.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.10、C【解析】直接利用同底数幂的乘除法运算法则、合并同类项法则分别化简求出答案.【详解】A.,故此项错误;B.,故此项错误;C.,故此项正确;D.,故此项错误.故选:C【点睛】本题是考查计算能力,主要涉及同底数幂的乘除法运算法则、合并同类项法则,掌握这些运算法则是解题的关键.11、C【详解】∵一个正多边形的一个外角为36°,∴这个正多边形的边数是360÷36=10,故选C12、D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(ab3)2=a2b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.二、填空题(每题4分,共24分)13、【分析】连接AD,如图,先利用勾股定理计算出BC=8,利用基本作图得到PQ垂直平分AB,所以DA=DB,设CD=x,则DB=DA=8-x,利用勾股定理得到x2+62=(8-x)2,然后解方程即可.【详解】解:连接AD,如图,

∵∠C=90°,AC=3,AB=5,

∴BC==8,由作法得PQ垂直平分AB,

∴DA=DB,

设CD=x,则DB=DA=8-x,

在Rt△ACD中,x2+62=(8-x)2,解得x=,即CD的长为.故答案为:.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和勾股定理.14、①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键.15、(﹣3,2).【详解】解:点P(m,n)关于y轴对称点的坐标P′(﹣m,n),所以点P(3,2)关于y轴对称的点的坐标为(﹣3,2).故答案为(﹣3,2).16、38°【分析】设∠A的度数为x,根据线段的垂直平分线的性质得到DB=DA,用x表示出∠ABC、∠C的度数,根据三角形内角和定理列式计算即可.【详解】解:设∠A的度数为x,

∵MN是AB的垂直平分线,

∴DB=DA,

∴∠DBA=∠A=x,

∵AB=AC,

∴∠ABC=∠C=33°+x,

∴33°+x+33°+x+x=180°,

解得x=38°.

故答案为:38°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、(3,1)【解析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.18、4【分析】利用平行四边形的性质得出AD∥BC,进而得出∠AEB=∠CBF,再利用角平分线的性质得出∠ABF=∠CBF,进而得出∠AEB=∠ABF,即可得出AB=AE,同理可得:BC=CF,即可得出答案.【详解】∵平行四边形ABCD,

∴AD∥BC,

∴∠AEB=∠CBF,

∵BE平分∠ABC,

∴∠ABF=∠CBF,

∴∠AEB=∠ABF,

∴AB=AE,

同理可得:BC=CF,

∵AB=3cm,BC=5cm,

∴AE=3cm.CF=5cm,

∴DE=5-3=2cm,DF=5-3=2cm,

∴DE+DF=2+2=4cm,

故答案为:4cm.【点睛】此题考查了平行四边形的性质,角平分线的性质,得出AB=AE,BC=CF是解题关键.三、解答题(共78分)19、-1【解析】先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.20、(1)梯子上端A到建筑物的底端C的距离为2.4米;(2)梯脚B将外移0.8米.【分析】(1)在Rt△ABC中利用勾股定理求出AC的长即可;(2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为0.7米,可以得出,梯子底端水平方向上滑行的距离.【详解】(1)在△ABC中,∠ACB=90°,AB=2.5,BC=0.7根据勾股定理可知AC=米答:梯子上端A到建筑物的底端C的距离为2.4米.(2)在△AˊBˊC中,∠ACB=90°,AˊBˊ=AB=2.5米,AˊC=AC-AAˊ=2.4-0.4=2米根据勾股定理可知BˊC=米米答:梯脚B将外移0.8米.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.21、(1)见解析;(1)△ABC的面积为cm1.【分析】(1)根据勾股定理的逆定理证明即可(1)根据勾股定理先求出BD,然后再求三角形的面积即可【详解】(1)∵BC=10,BD=16,CD=11111+161=101∴CD1+BD1=BC1,∴△BDC是直角三角形,∴BD⊥AC;(1)解:设AD=xcm,则AC=(x+11)cm,∵AB=AC,∴AB═(x+11)cm,在Rt△ABD中:AB1=AD1+BD1,∴(x+11)1=161+x1,解得x=,∴AC=+11=cm,∴△ABC的面积S=BD•AC=×16×=cm1.【点睛】勾股定理及其逆定理是本题的考点,熟练掌握其定理和逆定理是解题的关键.22、(1)平方米;(2)54平方米.【分析】(1)绿化的面积=长方形的面积-边长为米的正方形的面积,据此列式计算即可;(2)把a、b的值代入(1)题中的代数式计算即可.【详解】解:(1)平方米;(2)当时,.所以绿化的面积为54平方米.【点睛】本题主要考查了整式乘法的应用,正确列式、熟练掌握运算法则是解题的关键.23、(1)见解析;(2)见解析;(3)【分析】(1)由ASA即可得出结论;(2)先证明四边形ABCD是平行四边形,再证明AD=AB,即可得出结论;(3)由菱形的性质得出AC⊥BD,证明四边形ACED是平行四边形,得出AC=DE=2,AD=EC,由菱形的性质得出EC=CB=AB=2,得出EB=4,由勾股定理得BD═,即可得出答案.【详解】(1)∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.24、(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹果销售中共盈利4160元.【详解】解:(1)设试销时该品种苹果的进货价是每千克x元解得x=5经检验:x=5是原方程的解,并满足题意答:试销时该品种苹果的进货价是每千克5元.(2)两次购进苹果总重为:千克共盈利:元答:共盈利4160元.25、(1)y=-1x;(1)1【分析】(1)将点A(-1,1)代入y=kx求得k的值即可得出答案;

(1)先求出y=1x+4与y轴的交点,再根据三角形的面积公式求出△OAC的面积即可得.【详解】(1)将点A(﹣1,1)代入y=kx,得:﹣k=1,则k=﹣1,所以正比例函数解析式为y=﹣1x;(1)y=1x+4中令x=0,得:y=4,∴点C坐标为(0,4),则OC=4,所以两个函数图象与y轴围成图形的面积为×4×1=1.【点睛】本题主要考查两直线相交于平行的问题,解题的关键是掌握待定系数法求函数解析式及直线与坐标轴的交点坐标的求法.26、(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论