2025届浙江省金华市婺城区数学八上期末经典模拟试题含解析_第1页
2025届浙江省金华市婺城区数学八上期末经典模拟试题含解析_第2页
2025届浙江省金华市婺城区数学八上期末经典模拟试题含解析_第3页
2025届浙江省金华市婺城区数学八上期末经典模拟试题含解析_第4页
2025届浙江省金华市婺城区数学八上期末经典模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省金华市婺城区数学八上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.要使分式有意义,x的取值应满足()A.x≠1 B.x≠﹣2 C.x≠1或x≠﹣2 D.x≠1且x≠﹣22.把半径为0.5m的地球仪的半径增大0.5m,其赤道长度的增加量记为X,把地球的半径也增加0.5m,其赤道长度的增加量记为Y,那么X、Y的大小关系是()A.X>Y B.X<Y C.X=Y D.X+2π=Y3.已知等腰三角形的一边长为2,周长为8,那么它的腰长为()A.2 B.3 C.2或3 D.不能确定4.若(x+a)(x﹣2)=x2+bx﹣6,则a、b的值是()A.a=3,b=5 B.a=3,b=1 C.a=﹣3,b=﹣1 D.a=﹣3,b=﹣55.在下列长度的各组线段中,能组成三角形的是()A.,, B.,, C.,, D.,,6.如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A.1 B.3 C.3 D.7.如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.∠ABD=∠DCA,∠A=∠D8.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC的长为A.5 B.6 C.7 D.89.如果正多边形的一个内角是140°,则这个多边形是()A.正十边形 B.正九边形 C.正八边形 D.正七边形10.下列各点中位于第四象限的点是()A. B. C. D.二、填空题(每小题3分,共24分)11.一组数据为:5,﹣2,3,x,3,﹣2,若每个数据都是这组数据的众数,则这组数据的中位数是_____.12.点,是直线上的两点,则_______0(填“>”或“<”).13.无论取什么实数,点都在直线上,若点是直线上的点,那么__________.14.如图,等边△中,于,,点、分别为、上的两个定点且,在上有一动点使最短,则的最小值为_____.15.已知am=3,an=2,则a2m﹣n的值为_____.16.已知a2+b2=18,ab=﹣1,则a+b=____.17.如图,中,,,,为边的垂直平分线DE上一个动点,则的周长最小值为________.18.等腰三角形的一个角是50°,则它的顶角等于°.三、解答题(共66分)19.(10分)某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案:方案一:第一次提价p%,第二次提价q%;方案二:第一、二次均提价%;如果设原价为1元,(1)请用含p,p的式子表示提价后的两种方案中的产品价格;(2)若p、q是不相等的正数,设p%=m,q%=n,请你通过演算说明:这两种方案,哪种方案提价多?20.(6分)(1)如图①,已知线段,以为一边作等边(尺规作图,保留作图痕迹,不写作法);(2)如图②,已知,,,分别以为边作等边和等边,连接,求的最大值;(3)如图③,已知,,,,为内部一点,连接,求出的最小值.21.(6分)如图,已知等腰顶角.(1)在AC上作一点D,使(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:是等腰三角形.22.(8分)如图,△ABC和△ADE都是等腰三角形,其中AB=AC,AD=AE,且∠BAC=∠DAE.(1)如图①,连接BE、CD,求证:BE=CD;(2)如图②,连接BE、CD,若∠BAC=∠DAE=60°,CD⊥AE,AD=3,CD=4,求BD的长;(3)如图③,若∠BAC=∠DAE=90°,且C点恰好落在DE上,试探究CD2、CE2和BC2之间的数量关系,并加以说明.23.(8分)已知,如图所示,在中,.(1)作的平分线交于点;(要求:尺规作图,保留作图痕迹,不写作法.)(2)若,,求的长.24.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,求∠BDA的度数为多少时,△ADE是等腰三角形.25.(10分)计算及解方程组:(1);(2);(3)解方程组:.26.(10分)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据分式的分母不为0来列出不等式,解不等式即可得到答案.【详解】解:由题意得,(x+2)(x﹣1)≠0,解得,x≠1且x≠﹣2,故选:D.【点睛】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.2、C【分析】根据圆的周长公式分别计算长,比较即可得到结论.【详解】解:∵地球仪的半径为0.5米,∴X=2×(0.5+0.5)π﹣2×0.5π=πm.设地球的半径是r米,可得增加后,圆的半径是(r+0.5)米,∴Y=2(r+0.5)π﹣2πr=πm,∴X=Y,故选:C.【点睛】本题考查了圆的认识,圆的周长的计算,正确的理解题意是解题的关键.3、B【分析】根据等腰三角形性质和已知条件,进行分类讨论,即可得到答案,要注意的是一定要符合构成三角形的三边关系.【详解】已知三角形一边长为2,(1)当这一边是等腰三角形的腰时,它的腰长就为2,则底边是4根据三角形三边关系,这种情况不符合条件;(2)当这一边是等腰三角形的底边时∵周长为8,底边为2∴腰长为:=3(等腰三角形两腰相等)根据三角形三边关系,这种情况符合条件;综上所述,这个等腰三角形的腰长为3.故答案选B.【点睛】本题考查了三角形的三边关系与等腰三角形的性质,解题的关键是熟练的掌握三角形的三边关系与等腰三角形的性质.4、B【分析】先把方程的左边化为与右边相同的形式,再分别令其一次项系数与常数项分别相等即可求出a、b的值.【详解】解:原方程可化为:x2+(a﹣2)x﹣2a=x2+bx﹣6,故,解得.故选:B.【点睛】本题考查多项式乘法,掌握多项式乘多项式的计算法则是本题的解题关键.5、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.6、B【解析】利用等边三角形的性质得出C点位置,进而求出OC的长.【详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC是等边三角形,∴CE=AC×sin60°=,AE=BE,∵∠AOB=90°,∴EOAB,∴EC-OE≥OC,∴当点C,O,E在一条直线上,此时OC最短,故OC的最小值为:OC=CE﹣EO=3故选B.【点睛】本题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.7、D【分析】根据全等三角形的判定定理,逐一判断选项,即可得到结论.【详解】∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB(SSS),故A选项正确;∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故B选项正确;∵BO=CO,∴∠ACB=∠DBC,∵BC=CB,∠A=∠D∴△ABC≌△DCB(AAS),故C选项正确;∵∠ABD=∠DCA,∠A=∠D,BC=CB,不能证明△ABC≌△DCB,故D选项错误;故选:D.【点睛】本题主要考查三角形全等的判定定理,掌握SSS,SAS,AAS判定三角形全等,是解题的关键.8、A【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【详解】根据题意可得MN是直线AB的中点的周长为已知,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.9、B【解析】360°÷(180°-140°)

=360°÷40°

=1.

故选B.10、C【分析】根据各象限内点的坐标的符号特征,进行分析即可.【详解】A.位于第三象限,不符合题意;B.位于第一象限,不符合题意;C.位于第四象限,符合题意;D.位于第一象限,不符合题意.故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).二、填空题(每小题3分,共24分)11、1【分析】由于每个数据都是这组数据的众数,根据众数定义可知m=5,再根据中位数的计算方法进行计算即可.【详解】解:∵-2出现2次,1出现2次且每个数据都是这组数据的众数∴x=5,∴这组数据从小到大排列为:-2,-2,1,1,5,5,∴中位数==1.故答案为:1.【点睛】本题考查了众数、中位数,解题的关键是掌握众数、中位数的计算方法.12、>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.【详解】解:∵直线的k<0,∴函数值y随x的增大而减小.∵点,是直线上的两点,-1<3,∴y1>y2,即故答案为:>.【点睛】本题考查一次函数图象上点的坐标特征。利用数形结合思想解题是关键.13、16【分析】由点坐标可求出直线的解析式,从而可找到和之间的关系,代入即可求得的值.【详解】解:设点所在直线的解析式为,依题意得:∴,∵无论取什么实数,恒成立,∴,∴直线的解析式为,点是直线上的动点,,,,故答案为:.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式.14、1【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小,最小值PE+PQ=PE+EQ′=PQ′;【详解】解:如图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=3.1cm,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,∵AQ=2cm,AD=DC=3.1cm,∴QD=DQ′=1.1cm,∴CQ′=BP=2cm,∴AP=AQ′=1cm,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=1cm,∴PE+QE的最小值为:1cm.故答案为1.【点睛】本题考查等边三角形的性质和判定,轴对称的性质,以及最短距离问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.15、4.1【解析】分析:首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m-n的值为多少即可.详解:∵am=3,∴a2m=32=9,∴a2m-n==4.1.故答案为4.1.点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16、±1.【分析】根据题意,计算(a+b)2的值,从而求出a+b的值即可.【详解】(a+b)2=a2+2ab+b2=(a2+b2)+2ab=18﹣2=16,则a+b=±1.故答案为:±1.【点睛】本题考查了代数式的运算问题,掌握完全平方公式和代入法是解题的关键.17、1【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点P和点E重合时,△ACP的周长最小,再结合题目中的已知条件求出AB的长即可.【详解】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点P和点E重合时,△ACP的周长最小,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=1cm,故答案为:1.【点睛】本题考查了轴对称−最短路线问题、垂直平分线的性质以及直角三角形的性质,正确确定P点的位置是解题的关键.18、50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【详解】(1)当50°为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=.故答案为:50°或.考点:等腰三角形的性质.三、解答题(共66分)19、(1)方案一元;方案二:(1+%)2元;(2)方案二提价多.【分析】(1)根据各方案中的提价百分率,即可得到答案;(2)用方案二的产品价格减去方案一的产品价格,利用完全平方公式及多项式乘以多项式的法则化简,去括号合并后再利用完全平方公式变形即可判断.【详解】(1)方案一:元;方案二:(1+%)2元;(2)方案二价多.理由:∵方案一:,方案二:(1+)2=()2,∴(1+)2=()2=m2+mn+n2-mn=m2-mn+n2=()2,∵,∴()2>0,∴方案二提价多.【点睛】本题考查了列代数式、整式混合运算的应用,利用作差法比较大小,熟练掌握完全平方公式是解本题的关键.20、(1)见解析;(2)5;(3)【分析】(1)首先分别以A,B为圆心,以线段AB长为半径为半径画弧,两弧的交点为C,最后连接AB,AC就行了;(2)以点E为中心,将△ACE逆时针旋转60°,则点C落在点B,点A落在点E′.连接AE′,CE′,当点E′、A、C在一条直线上时,AE有最大值.(3)首先以点B为中心,将△ABP逆时针旋转90°,则点A落在A′,点P落在P′,当A′、P′、P、C在一条直线上时,取得最小值,然后延长A′B,过点C作CD⊥A′B,利用勾股定理即可得解.【详解】(1)如图所示:(2)根据题意,以点E为中心,将△ACE逆时针旋转60°,则点C落在点B,点A落在点E′.连接AE′,CE′,当点E′、A、C在一条直线上时,AE有最大值,如图所示:∵E′B=AC,EE′=AE=AE′,,,∴AE的最大值为3+2=5;(3)以点B为中心,将△ABP逆时针旋转90°,则点A落在A′,点P落在P′,当A′、P′、P、C在一条直线上时,取得最小值,延长A′B,过点C作CD⊥A′B于D,如图所示:由题意,得∵A′B=AB=3,∠A′BA=90°,∠ABC=30°∴∠A′BC=120°∴∠CBD=60°∵BC=4∴BD=2,CD=∴A′C==故其最小值为.【点睛】此题主要考查旋转以及等边三角形的性质,解题关键是正确理解求解线段的最大值和最小值的条件.21、(1)如图,点D为所作;见解析;(2)证明见解析.【解析】(1)根据题意作AB的垂直平分线;(2)根据题意求出,即可证明.【详解】(1)解:如图,点D为所作;(2)证明:∵,∴,∵,∴,∴,∴,∴是等腰三角形.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的判定与性质.22、(1)证明见解析;(1)2;(3)CD1+CE1=BC1,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.

(1)先求出∠CDA=∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.

(3)方法1、同(1)的方法即可得出结论;方法1、先判断出CD1+CE1=1(AP1+CP1),再判断出CD1+CE1=1AC1.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(1)如图1,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=∠ADE=×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD===2.(3)CD1、CE1、BC1之间的数量关系为:CD1+CE1=BC1,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=42°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=42°,∴∠BEC=∠BEA+∠AED=42°+42°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC1=BE1+CE1.∴BC1=CD1+CE1.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD1=(CP+PD)1=(CP+AP)1=CP1+1CP•AP+AP1,CE1=(EP﹣CP)1=(AP﹣CP)1=AP1﹣1AP•CP+CP1,∴CD1+CE1=1AP1+1CP1=1(AP1+CP1),∵在Rt△APC中,由勾股定理可知:AC1=AP1+CP1,∴CD1+CE1=1AC1.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB1+AC1=BC1,即1AC1=BC1,∴CD1+CE1=BC1.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(1)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.23、(1)答案见解析;(2)1【解析】(1)根据角平分线的尺规作图步骤,画出图形即可;

(2)过点D作DE⊥AB于点E,先证明DE=DC=6,BC=BE,再根据AD=10,求出AE,设BC=x,则AB=x+8,根据勾股定理求出x的值即可.【详解】(1)作图如下:(2)过点D作DE⊥AB于点E,∵DC⊥BC,BD平分∠ABC,∴DE=DC=6,∵AD=10,∴AE=,∵∠DBC=∠DBE,∠C=∠BED=90°,BD=BD,∴∆DBC≅∆DBE(AAS),∴BE=BC,设BC=x,则AB=x+8,∴在Rt△ABC中,由勾股定理得:x2+162=(x+8)2,解得:x=12,∴AB=12+8=1.【点睛】本题主要考查尺规作角平分线,角平分线的性质定理以及勾股定理,添加辅助线,构造直角三角形,利用勾股定理列方程,是解题的关键.24、(1)30,110,小;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)∠BDA=80°或110°.【分析】(1)由平角的定义和三角形外角的性质可求∠EDC,∠DEC的度数,由三角形内角和定理可判断∠BDA的变化;(2)当DC=2时,由“AAS”可证△ABD≌△DCE;(3)分AD=DE,DE=AE两种情况讨论,由三角形内角和和三角形外角的性质可求∠BDA的度数.【详解】解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°,∴∠EDC=180°-∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°-∠BAD,∵点D从B向C的运动过程中,∠BAD逐渐变大,∴∠BDA逐渐变小,故答案为:小;(2)当DC=2时,△ABD≌△DCE.理由如下∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA);(3)若AD=DE时.∵AD=DE,∠ADE=40°,∴∠DEA=∠D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论