2025届泉州市重点中学数学八年级第一学期期末调研模拟试题含解析_第1页
2025届泉州市重点中学数学八年级第一学期期末调研模拟试题含解析_第2页
2025届泉州市重点中学数学八年级第一学期期末调研模拟试题含解析_第3页
2025届泉州市重点中学数学八年级第一学期期末调研模拟试题含解析_第4页
2025届泉州市重点中学数学八年级第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届泉州市重点中学数学八年级第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系中,点A坐标为(2,2),作AB⊥x轴于点B,连接AO,绕原点B将△AOB逆时针旋转60°得到△CBD,则点C的坐标为()A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)2.如图,已知,点、、……在射线上,点、、…在射线上;、、……均为等边三角形,若,则的边长为.A.4028 B.4030 C. D.3.在实数,,,中,无理数是()A. B. C. D.4.已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为()A.13 B.14 C.13或14 D.95.已知的外角中,若,则等于()A.50° B.55° C.60° D.65°6.下列命题中,真命题是()A.对顶角不一定相等 B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等 D.等腰三角形是轴对称图形7.下列图案中,不是轴对称图形的是()A. B. C. D.8.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A. B.C. D.9.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是(

)A.6

B.7

C.8

D.910.如果一次函数的图象与直线平行且与直线y=x-2在x轴上相交,则此函数解析式为()A. B. C. D.11.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)12.如图,为等边三形内的一点,,将线段以点为旋转中心逆时针旋转60°得到线段,下列结论:①点与点的距离为5;②;③可以由绕点进时针旋转60°得到;④点到的距离为3;⑤,其中正确的有()A.2个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm,则它最短边长为________.14.如图,已知平分,且,若,则的度数是__________.15.如图,中,,将折叠,使点与的中点重合,折痕为则线段的长为________.16.一个n边形的内角和为1260°,则n=__________.17.在实数π、、﹣、、0.303003…(相邻两个3之间依次多一个0)中,无理数有_____个.18.一个多边形的每个外角都等于,则这个多边形的边数是___________三、解答题(共78分)19.(8分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.20.(8分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.(8分)自2019年11月20日零时起,大西高铁车站开始试点电子客票业务,旅客购票乘车更加便捷.大西高铁客运专线是国家《中长期铁路网规划》中的重要组成部分,它的建成将意味着今后山西人去西安旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车.已知高铁线路中从A地到某市的高铁行驶路程是400km,普通列车的行驶路程是高铁行驶路程的1.3倍,若高铁的平均速度(km/h)是普通列车平均速度(km/h)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h,求普通列车和高铁的平均速度.22.(10分)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.23.(10分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.24.(10分)(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.25.(12分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.26.先化简,再求值(1),其中,(2),其中

参考答案一、选择题(每题4分,共48分)1、A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,2),∴OB=2,AB=2∴Rt△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=2,∠CBE=30°,∴CE=BC=,BE=EC=3,∴OE=1,∴点C的坐标为(﹣1,),故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.2、C【分析】根据等腰三角形的性质,等边三角形的性质以及三角形外角的性质得出A1B1=1A2B2=2,A3B3=4,A4B4=8……,可得AnBn=2n-1,即可求出的边长为..【详解】解:如图,∵是等边三角形,

∴∠B1A1O=60°,

∵∠MON=30°,

∴∠OB1A1=60°−30°=30°,

∴OA1=B1A1∵,

∴OA1=A1B1=1同理可得,A2B2=2,A3B3=4,A4B4=8,……

∴AnBn=2n-1,∴当n=2015时,A2015B2015=22014,故选C.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律是解题关键.3、D【分析】无理数就是无限不循环小数,利用无理数的定义即可判定选择项.【详解】解:在实数,,,中,=2,=-3,π是无理数.故选D.【点睛】此题主要考查了无理数的定义.初中范围内学习的无理数有三类:①π类,②开方开不尽的数,③虽有规律但是无限不循环的数.4、C【解析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a﹣4=0,b﹣5=0,解得a=4,b=5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=1,所以,三角形的周长为13或1.故选:C.【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.5、B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【详解】解:∵∠ACD是△ABC的一个外角,

∴∠ACD=∠B+∠A,

∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,

故选:B.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6、D【分析】利用对顶角的性质、等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、对顶角相等,故错误,是假命题;B、等腰三角形的两个底角相等,故错误,是假命题;C、两直线平行,同旁内角互补,故错误,是假命题;D、等腰三角形是轴对称图形,对称轴是底边上的高所在直线,故正确,是真命题.故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、等腰三角形的性质、平行线的性质,难度不大.7、B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项不符合题意;

B、不是轴对称图形,故本选项符合题意;

C、是轴对称图形,故本选项不符合题意;

D、是轴对称图形,故本选项不符合题意.

故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、A【分析】根据轴对称图形的概念解答即可.【详解】A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,熟记轴对称图形的定义是解题关键.9、C【分析】根据多边形的内角和公式(n-2)•110°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•110°=3×360°,解得n=1.【点睛】熟练掌握多边形内角和公式和外角和是解决本题的关键,难度较小.10、A【分析】设所求的直线的解析式为,先由所求的直线与平行求出k的值,再由直线与直线y=x-2在x轴上相交求出b的值,进而可得答案.【详解】解:设所求的直线的解析式为,∵直线与直线平行,∴,∵直线y=x-2与x轴的交点坐标为(2,0),直线与直线y=x-2在x轴上相交,∴,解得:b=﹣3;∴此函数的解析式为.故选:A.【点睛】本题考查了直线与坐标轴的交点以及利用待定系数法求一次函数的解析式,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题的关键.11、A【解析】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.考点:坐标与图形变化-平移.12、B【分析】连结DD′,根据旋转的性质得AD=AD′,∠DAD′=60°,可判断△ADD′为等边三角形,则DD′=5,可对①进行判断;由△ABC为等边三角形得到AB=AC,∠BAC=60°,则把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,于是可对③进行判断;再根据勾股定理的逆定理得到△DD′C为直角三角形,则可对②④进行判断;由于S四边形ADCD′=S△ADD′+S△D′DC,利用等边三角形的面积公式和直角三角形面积公式计算后可对⑤进行判断.【详解】解:连结DD′,如图,∵线段AD以点A为旋转中心逆时针旋转60°得到线段AD′,∴AD=AD′,∠DAD′=60°,∴△ADD′为等边三角形,∴DD′=5,所以①正确;∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴把△ABD逆时针旋转60°后,AB与AC重合,AD与AD′重合,∴△ACD′可以由△ABD绕点A逆时针旋转60°得到,所以③正确;∴D′C=DB=4,∵DC=3,在△DD′C中,∵32+42=52,∴DC2+D′C2=DD′2,∴△DD′C为直角三角形,∴∠DCD′=90°,∵△ADD′为等边三角形,∴∠ADD′=60°,∴∠ADC≠150°,所以②错误;∵∠DCD′=90°,∴DC⊥CD′,∴点D到CD′的距离为3,所以④正确;∵S四边形ADCD′=S△ADD′+S△D′DC=,所以⑤错误.故选:B.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线的夹角等于旋转角.也考查了等边三角形的判定与性质以及勾股定理的逆定理.二、填空题(每题4分,共24分)13、3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【详解】解:∵三角形三个内角之比为1:2:3,

∴设三角形最小的内角为x,则另外两个内角分别为2x,3x,

∴x+2x+3x=180°,

∴x=30°,3x=90°,

∴此三角形是直角三角形.

∴它的最小的边长,即30度角所对的直角边长为:×6=3cm.故答案为:3cm.【点睛】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.14、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C的度数.【详解】∵平分,且,∴∠CBE=∠ABC=25°,∵∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【点睛】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.15、1【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在利用勾股定理列方程解出x,就求出BN的长.【详解】∵D是CB中点,BC=6∴BD=3设BN=x,AN=9-x,由折叠,DN=AN=9-x,在中,,,解得x=1∴BN=1.故答案是:1.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.16、1【分析】根据多边形内角和公式可直接进行求解.【详解】解:由一个n边形的内角和为1260°,则有:,解得:,故答案为1.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.17、3【分析】根据无理数的概念,即可求解.【详解】无理数有:π、、1.313113…(相邻两个3之间依次多一个1)共3个.故答案为:3【点睛】本题主要考查无理数的概念,掌握“无限不循环小数是无理数”是解题的关键.18、6【分析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】故个多边形是六边形.故答案为:6.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.三、解答题(共78分)19、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=2即可.【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥AB,FB是OA边上的中线,∴AN'=AB=2,BF⊥OA,BF平分∠ABO,∵ON'⊥AB,MN⊥OB,∴MN=MN',∴N'和N关于BF对称,此时OM+MN的值最小,∴OM+MN=OM+MN'=ON,∵ON===2,∴OM+MN=2;即OM+NM的最小值为2.【点睛】本题是三角形综合题目,考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的性质以及最小值问题;本题综合性强,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.20、(1)计划36座的新能源客车6辆,共有218名志愿者;(2)调配36座新能源客车3辆,22座新能源客车5辆.【分析】(1)设计划调配36座新能源客车辆,该大学共有名志愿者.列方程组,得解方程组可得;(2)设调配36座新能源客车辆,22座新能源客车辆,根据题意,得,求正整数解;【详解】解:(1)设计划调配36座新能源客车辆,该大学共有名志愿者.列方程组,得解得∴计划36座的新能源客车6辆,共有218名志愿者.(2)设调配36座新能源客车辆,22座新能源客车辆,根据题意,得,正整数解为∴调配36座新能源客车3辆,22座新能源客车5辆.【点睛】考核知识点:二元一次方程组的运用.理解题意是关键.21、普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【分析】由高铁行驶路程×1.3即可求出普通列车的行驶路程;设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,根据乘坐高铁所需时间比乘坐普通列车所需时间缩短3.6h列出分式方程即可求解。【详解】解:普通列车的行驶路程为:400×1.3=520(km).设普通列车的平均速度为xkm/h,则高铁的平均速度为2.5km/h,则根据题意得:,解得x=100,经检验,x=100是原分式方程的解,且符合题意.则高铁的平均速度是100×2.5=250(km/h).答:普通列车的平均速度是100km/h,高铁的平均速度是250km/h.【点睛】本题主要考查分式方程的应用,解题的关键是正确解读题意,设出未知数,根据等量关系列出分式方程.22、证明见解析【解析】试题分析:根据等腰三角形的性质和三角形的内角和定理求得∠BDC=∠BCD=75°,在根据三角形外角的性质求得∠DOC=75°,即可得∠DOC=∠BDC,结论得证.试题解析:证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD.∵∠DBE=30°∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°.∴∠DOC=∠BDC,∴△CDO是等腰三角形.23、证明见解析.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.24、(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;

(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;

(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,

∴∠BAC+∠CAD=∠DAE+∠CAD,

∴∠BAD=∠CAE,

在△ABD和△ACE中,,

∴△ABD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论