六安市重点中学2025届数学八上期末教学质量检测模拟试题含解析_第1页
六安市重点中学2025届数学八上期末教学质量检测模拟试题含解析_第2页
六安市重点中学2025届数学八上期末教学质量检测模拟试题含解析_第3页
六安市重点中学2025届数学八上期末教学质量检测模拟试题含解析_第4页
六安市重点中学2025届数学八上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六安市重点中学2025届数学八上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°2.若分式有意义,的值可以是()A.1 B.0 C.2 D.-23.已知为常数,点在第二象限,则关于的方程根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断4.如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()A.5 B.6 C.7 D.85.如图是根据某校学生的血型绘制的扇形统计图,该校血型为型的有人,那么该校血型为型的人数为()A. B. C. D.6.在平面直角坐标系中,点P(3,﹣2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列语句正确的是()A.4是16的算术平方根,即±=4B.﹣3是27的立方根C.的立方根是2D.1的立方根是﹣18.把分解因式,结果正确的是()A. B.C. D.9.的立方根为()A. B. C. D.10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2二、填空题(每小题3分,共24分)11.如图,长方形两边长,两顶点分别在轴的正半轴和轴的正半轴上运动,则顶点到原点的距离最大值是__________.12.若等腰三角形的两边长为3和7,则该等腰三角形的周长为__________.13.如图,直线:,点的坐标为,过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,长为半径画弧交轴负半轴于点;…,按此作法进行下去.点的坐标为__________.14.如图,在等腰三角形中,,为边上中点,过点作,交于,交于,若,则的长为_________.15.若一个正方形的面积为,则此正方形的周长为___________.16.如图,直角坐标系中,直线和直线相交于点,则方程组的解为__________.17.过多边形的一个顶点可以作9条对角线,那么这个多边形的内角和比外角和大_____.18.若不等式组的解集是,则的取值范围是________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,点为正半轴上一点,过点的直线轴,且直线分别与反比例函数和的图像交于两点,.求的值;当时,求直线的解析式;在的条件下,若轴上有一点,使得为等腰三角形,请直接写出所有满足条件的点的坐标.20.(6分)如图1,直线分别与轴、轴交于、两点,平分交于点,点为线段上一点,过点作交轴于点,已知,,且满足.(1)求两点的坐标;(2)若点为中点,延长交轴于点,在的延长线上取点,使,连接.①与轴的位置关系怎样?说明理由;②求的长;(3)如图2,若点的坐标为,是轴的正半轴上一动点,是直线上一点,且的坐标为,是否存在点使为等腰直角三角形?若存在,求出点的坐标;若不存在,说明理由.21.(6分)已知,求代数式的值.22.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.23.(8分)如图,在中,,,点为的中点,点为边上一点且,延长交的延长线于点,若,求的长.24.(8分)已知为等边三角形,在的延长线上,为线段上的一点,.(1)如图,求证:;(2)如图,过点作于点,交于点,当时,在不添加任何辅助线的情况下,直接写出图中所有的等腰三角形.25.(10分)解不等式组并把它的解集在数轴上表示出来.26.(10分)为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.

参考答案一、选择题(每小题3分,共30分)1、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.2、C【分析】分式有意义的条件是:分母不等于0,据此解答.【详解】由题意知:,解得:,,,故选:C.【点睛】本题考查分式有意义的条件,熟悉知识点分母不等于0是分式有意义的条件即可.3、B【分析】根据判别式即可求出答案.【详解】解:由题意可知:,

∴,

故选:B.【点睛】本题考查的是一元二次方程根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.4、D【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】解:如图,分情况讨论:

①AB为等腰△ABC的底边时,符合条件的C点有4个;

②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.

故选:D.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.5、B【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.6、D【解析】坐标系中的四个象限分别为第一象限(x>0,y>0);第二象限(x>0,y<0);第三象限(x<0,y<0);第四象限(x<0,y<0).所以P在第四象限.7、C【分析】根据正数的立方根是正数、负数的立方根是负数和算术平方根的概念解答即可.【详解】解:A、4是16的算术平方根,即=4,故A错误;B、﹣3是﹣27的立方根,故B错误;C、=8,8的立方根是2,故C正确;D、1的立方根是1,故D错误.故选:C.【点睛】本题考查平方根和立方根的概念,解题的关键是熟练理解立方根的概念:如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根.8、C【解析】先提公因式2,然后再利用平方差公式进行分解即可.【详解】==,故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.9、A【分析】根据立方根的定义与性质即可得出结果【详解】解:∵∴的立方根是故选A【点睛】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.10、C【解析】过点P作PE⊥BC于E,

∵AB∥CD,PA⊥AB,

∴PD⊥CD,

∵BP和CP分别平分∠ABC和∠DCB,

∴PA=PE,PD=PE,

∴PE=PA=PD,

∵PA+PD=AD=8,

∴PA=PD=1,

∴PE=1.

故选C.二、填空题(每小题3分,共24分)11、【分析】取AB的中点E,连接OE,DE,易得O,D之间的最大距离为OE+DE,分别求出OE,DE的长,即可得出答案.【详解】如图,取AB的中点E,连接OE,DE,∵AB=4∴AE=2∵四边形ABCD为矩形∴∠DAE=90°∵AD=2,AE=2∴DE=∵在Rt△AOB中,E为斜边AB的中点,∴OE=AB=2又∵OD≤OE+DE∴点到原点的距离最大值=OE+DE=故答案为:.【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,熟记直角三角形斜边上的中线等于斜边的一半,正确作出辅助线是解题的关键.12、17【分析】有两种情况:①腰长为3,底边长为7;②腰长为7,底边长为3,分别讨论计算即可.【详解】①腰长为3,底边长为7时,3+3<7,不能构成三角形,故舍去;②腰长为7,底边长为3时,周长=7+7+3=17.故答案为17.【点睛】本题考查等腰三角形的性质,当腰和底不明确的时候,需要分类讨论,并利用三边关系舍去不符合题意的情况.13、(-22019,0)【分析】先根据一次函数解析式求出B1点的坐标,再根据B1点的坐标求出OA2的长,用同样的方法得出OA3,OA4的长,以此类推,总结规律便可求出点A2020的坐标.【详解】解:∵点A1坐标为(-1,0),∴OA1=1,∵在中,当x=-1时,y=,即B1点的坐标为(-1,),∴由勾股定理可得OB1==2,即OA2=2,即点A2的坐标为(-2,0),即(-21,0),∴B2的坐标为(-2,),同理,点A3的坐标为(-4,0),即(-22,0),点B3的坐标为(-4,),以此类推便可得出:点A2020的坐标为(-22019,0).故答案为:(-22019,0).【点睛】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键.14、1【分析】连接BD,利用ASA证出△EDB≌△FDC,从而证出S△EDB=S△FDC,从而求出S△DBC,然后根据三角形的面积即可求出CD,从而求出AC,最后利用勾股定理即可求出结论.【详解】解:连接BD∵在等腰三角形中,,为边上中点,∴AB=BC,BD=CD=AD,∠BDC=90°,∠EBD=,∠C=45°∵∴∠EDF=∠BDC=90°,∠EBD=∠C=45°∴∠EDB=∠FDC在△EDB和△FDC中∴△EDB≌△FDC∴S△EDB=S△FDC∴S△DBC=S△FDC+S△BDF=S△EDB+S△BDF=∴∴CD2=18∴CD=∴AC=2CD=∴AB2+BC2=AC2∴2AB2=()2故答案为:1.【点睛】此题考查的是全等三角形的判定及性质、等腰三角形的性质和勾股定理,掌握全等三角形的判定及性质、等腰三角形的性质和勾股定理是解决此题的关键.15、【分析】由正方形的面积是边长的平方,把分解因式得边长,从而可得答案.【详解】解:正方形的边长是:正方形的周长是:故答案为:【点睛】本题考查的是因式分解,掌握利用完全平方式分解因式是解题关键.16、【分析】根据题意,将代入中求出m即可得到方程组的解.【详解】将代入中得,则∴∵直线和直线相交于点∴的解为.故答案为:.【点睛】本题主要考查了一次函数图像的交点与二元一次方程组的关系,熟练掌握相关知识是解决本题的关键.17、1440°【分析】从多边形一个顶点可作9条对角线,则这个多边形的边数是12,n边形的内角和可以表示成(n﹣2)•180°,代入公式就可以求出内角和.再根据多边形外角和等于360°列式计算即可.【详解】解:∵过多边形的一个顶点共有9条对角线,故该多边形边数为12,∴内角和是(12﹣2)•180°=1800°,∴这个多边形的内角和比外角和大了:1800°﹣360°=1440°.故答案为:1440°【点睛】本题主要考查了多边形的对角线、内角和公式.外角和公式,是需要熟记的内容,比较简单.18、【分析】先解第一个不等式得到,由于不等式组的解集为,根据同小取小得到.【详解】解:解①得,

∵不等式组的解集为,

∴.

故答案为:【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.三、解答题(共66分)19、(1)k=﹣20;(2)y=﹣x;(3)点N的坐标为(,0)或(,0)或(﹣,0)或(,0).【分析】(1)由结合反比例函数k的几何意义可得+4=14,进一步即可求出结果;(2)由题意可得MO=MQ,于是可设点Q(a,﹣a),再利用待定系数法解答即可;(3)先求出点Q的坐标和OQ的长,然后分三种情况:①若OQ=ON,可直接写出点N的坐标;②若QO=QN,根据等腰三角形的性质解答;③若NO=NQ,根据两点间的距离解答.【详解】解:(1)∵,S△POM=,S△QOM=,∴+4=14,解得,∵k<0,∴k=﹣20;(2)∵,轴,∴,∴MO=MQ,设点Q(a,﹣a),直线OQ的解析式为y=mx,把点Q的坐标代入得:﹣a=ma,解得:m=﹣1,∴直线OQ的解析式为y=﹣x;(3)∵点Q(a,﹣a)在上,∴,解得(负值舍去),∴点Q的坐标为,则,若为等腰三角形,可分三种情况:①若OQ=ON=,则点N的坐标是(,0)或(﹣,0);②若QO=QN,则NO=2OM=,∴点N的坐标是(,0);③若NO=NQ,设点N坐标为(n,0),则,解得,∴点N的坐标是(,0);综上,满足条件的点N的坐标为(,0)或(,0)或(﹣,0)或(,0).【点睛】本题考查了反比例函数系数k的几何意义、等腰三角形的性质、勾股定理以及两点间的距离等知识,具有一定的综合性,熟练掌握相关知识是解题的关键.20、(1)点A的坐标为(3,0),点B的坐标为(0,6);(2)①BG⊥y轴,理由见解析;②;(3)存在,点E的坐标为(0,4)【分析】(1)根据平方和绝对值的非负性即可求出m和n的值,从而求出点A、B的坐标;(2)①利用SAS即可证出△BDG≌△ADF,从而得出∠G=∠AFD,根据平行线的判定可得BG∥AF,从而得出∠GBO=90°,即可得出结论;②过点D作DM⊥x轴于M,根据平面直角坐标系中线段的中点公式即可求出点D的坐标,从而求出OM=,DM=3,根据角平分线的定义可得∠COA=45°,再根据平行线的性质和等腰三角形的判定可得△FMD为等腰三角形,FM=DM=3,从而求出点F的坐标;(3)过点F作FG⊥y轴于G,过点P作PH⊥y轴于H,利用AAS证出△GFE≌△HEP,从而得出FG=EH,GE=PH,然后根据点F和点P的坐标即可求出OE的长,从而求出点E的坐标.【详解】解:(1)∵,∴解得:∴AO=3,BO=6∴点A的坐标为(3,0),点B的坐标为(0,6);(2)①BG⊥y轴,理由如下∵点为中点∴BD=AD在△BDG和△ADF中∴△BDG≌△ADF∴∠G=∠AFD∴BG∥AF∴∠GBO=180°-∠AOB=90°∴BG⊥y轴;②过点D作DM⊥x轴于M∵点为中点∴点D的坐标为()=()∴OM=,DM=3∵平分∴∠COA=∵∴∠MFD=∠COA=45°∴△FMD为等腰三角形,FM=DM=3∴OF=FM-OM=;(3)存在,过点F作FG⊥y轴于G,过点P作PH⊥y轴于H若为等腰直角三角形,必有EF=PE,∠FEP=90°∴∠GFE+∠GEF=90°,∠HEP+∠GEF=90°∴∠GFE=∠HEP在△GFE和△HEP中∴△GFE≌△HEP∴FG=EH,GE=PH∵点的坐标为,点的坐标为∴OG=10,PH=6∴GE=6∴OE=OG-GE=4∴点E的坐标为(0,4).【点睛】此题考查的是非负性的应用、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标的求法,掌握平方和绝对值的非负性、构造全等三角形的方法、全等三角形的判定及性质、平行线的判定及性质和平面直角坐标系中线段中点坐标公式是解决此题的关键.21、11【解析】先求出m+n和mn的值,再根据完全平方公式变形,代入求值即可.【详解】∵,∴m+n=2,mn=1∴=.【点睛】此题考查了二次根式的混合运算法则,完全平方公式的应用,主要考查了学生的计算能力,题目较好.22、证明见解析.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.23、1.【分析】先根据含的直角三角形求BC,再利用勾股定理求出AC,进而求出P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论