版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省抚顺市新宾满族自治县数学八年级第一学期期末检测模拟试题检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,设点P到原点O的距离为p,将x轴的正半轴绕O点逆时针旋转与OP重合,记旋转角为,规定[p,]表示点P的极坐标,若某点的极坐标为[2,135°],则该点的平面坐标为()
A.() B.() C.() D.()2.已知,则M等于()A. B. C. D.3.下列各式由左边到右边的变形中,是分解因式的为()A. B.C. D.4.浚县古城是闻名遐迩的历史文化名城,“元旦”期间相关部门对到浚县观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是()A.此次调查的总人数为5000人B.扇形图中的为10%C.样本中选择公共交通出行的有2500人D.若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有2.5万人5.把分解因式正确的是()A. B. C. D.6.二元一次方程2x−y=1有无数多个解,下列四组值中是该方程的解是()A. B. C. D.7.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A. B. C. D.8.计算的结果为()A.m﹣1 B.m+1 C. D.9.如图,,和,和为对应边,若,,则等于()A. B. C. D.10.2可以表示为()A.x3+x3 B.2x4-x C.x3·x3 D.x211.下列计算中,正确的是()A. B.C. D.12.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC的度数为()A.60° B.45° C.75° D.90°二、填空题(每题4分,共24分)13.已知,,则____.14.分解因式:x2-9=_▲.15.把多项式进行分解因式,结果为________________.16.如图,小颖同学折叠一个直角三角形的纸片,使与重合,折痕为,若已知,,则的长为________.17.分解因式:x3﹣2x2+x=______.18.若,则的值为_____.三、解答题(共78分)19.(8分)如图,在中,,,以为一边向上作等边三角形,点在垂直平分线上,且,连接,,.(1)判断的形状,并说明理由;(2)求证:;(3)填空:①若,相交于点,则的度数为______.②在射线上有一动点,若为等腰三角形,则的度数为______.20.(8分)求下列各式中的.(1);(2).21.(8分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.22.(10分)如图,正比例函数y=x与一次函数y=ax+7的图象相交于点P(4,n),过点A(2,0)作x轴的垂线,交一次函数的图象于点B,连接OB.(1)求a值;(2)求△OBP的面积;(3)在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,请直接写出Q点的坐标.23.(10分)如图1,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ,CP交于点M.(1)求证:△ABQ△CAP;(2)如图1,当点P,Q分别在AB,BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P,Q在分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠QMC=度.(直接填写度数)24.(10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?25.(12分)如图,,,(1)求证:;(2)连接,求证:.26.如图,已知.(1)画出关于轴对称的;(2)写出关于轴对称的各顶点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意可得,,过点P作PA⊥x轴于点A,进而可得∠POA=45°,△POA为等腰直角三角形,进而根据等腰直角三角形的性质可求解.【详解】解:由题意可得:,,过点P作PA⊥x轴于点A,如图所示:∴∠PAO=90°,∠POA=45°,∴△POA为等腰直角三角形,∴PA=AO,∴在Rt△PAO中,,即,∴AP=AO=2,∴点,故选B.【点睛】本题主要考查平面直角坐标系点的坐标、勾股定理及旋转的性质,熟练掌握平面直角坐标系点的坐标、勾股定理及旋转的性质是解题的关键.2、A【解析】试题解析:试题解析:故选A.3、C【解析】试题分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选C.考点:因式分解的意义.4、D【分析】根据自驾人数及其对应的百分比可得样本容量,根据各部分百分比之和等于1可得其它m的值,用总人数乘以对应的百分比可得选择公共交通出行的人数,利用样本估计总体思想可得选择自驾方式出行的人数.【详解】A.本次抽样调查的样本容量是2000÷40%=5000,此选项正确;
B.扇形统计图中的m为1-(50%+40%)=10%,此选项正确;
C.样本中选择公共交通出行的约有5000×50%=2500(人),此选项正确;
D.若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有5×40%=2(万人),此选项错误;
故选:D.【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.5、D【分析】先提取公因式mn,再对余下的多项式利用完全平方公式继续分解.【详解】==.故选:D.【点睛】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.6、D【分析】将各项中x与y的值代入方程检验即可得到结果.【详解】A、把代入方程得:左边,右边=1,不相等,不合题意;
B、把代入方程得:左边,右边=1,不相等,不合题意;
C、把代入方程得:左边,右边=1,不相等,不合题意;
D、把代入方程得:左边,右边=1,相等,符合题意;
故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7、D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.8、D【分析】把第二个分式变形后根据同分母分式的加减法法则计算即可.【详解】解:原式====.故选:D.【点睛】本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.9、A【分析】根据全等三角形的性质求出∠D,再用三角形的内角和定理即可求解.【详解】∵∴∠D=∠A=123°又∴=180°-∠D-∠F=180°-123°-39°=18°故选:A【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应角相等及三角形的内角和定理是关键.10、A【分析】根据整式的运算法则即可求出答案.【详解】B、原式=,故B的结果不是.C、原式=,故C的结果不是.D、原式=,故D的结果不是.故选A.【点睛】本题主要考查整式的运算法则,熟悉掌握是关键.11、C【详解】选项A,;选项B,;选项C,;选项D,,必须满足a-2≠0.故选C.12、C【分析】根据三角形的外角的性质计算,得到答案.【详解】∵∠GFA=90°,∠A=45°,∴∠CGD=45°,∴∠BDC=∠CGD+∠C=75°,故选:B.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、填空题(每题4分,共24分)13、1【分析】利用同底数幂的运算法则计算即可.【详解】解:且,∴原式=故答案为1.:【点睛】本题考查同底数幂的乘法,底数不变,指数相加;幂的乘方,底数不变,指数相乘,熟练掌握运算法则是解题的关键.14、(x+3)(x-3)【详解】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).15、2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底.16、【分析】连接BE,根据线段垂直平分线性质可得BE=AE,再由勾股定理可得CB²+CE²=BE².【详解】解:连接BE由折叠可知,DE是AB的垂直平分线
∴BE=AE
设CE为x,则BE=AE=8-x
在Rt△BCE中,
由勾股定理,得
CB²+CE²=BE²
∴6²+x²=(8-x)²
解得∴CE=【点睛】考核知识点:勾股定理.根据折叠的性质,把问题转化为利用勾股定理来解决.17、x(x-1)2.【解析】由题意得,x3﹣2x2+x=x(x﹣1)218、1【分析】把所求多项式进行变形,代入已知条件,即可得出答案.【详解】∵,∴;故答案为1.【点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.三、解答题(共78分)19、(1)△CBE是等边三角形理由见解析;(2)见解析;(3)①60º,②15º或60º或105º【分析】(1)由垂直平分线的性质可得EC=EB,再算出∠CBE=60°,可判定;(2)通过证明△ABE≌△DBC可得;(3)①由(2)中全等可得∠EAB=∠CDB,再根据三角形内角和可得∠AFD的度数;②分PB=PB,BP=BC,CP=CB三种情况讨论,通过等腰三角形的性质,借助∠ABC的度数计算∠ACP的度数.【详解】解:(1)△CBE是等边三角形理由如下:∵点E在BC垂直平分线上∴EC=EB∵EB⊥AB∴∠ABE=90º∵∠ABC=30º∴∠CBE=60º∴△CBE是等边三角形(2)∵△ABD是等边三角形∴AB=DB,∠ABD=60º∵∠ABC=30º∴∠DBC=90º∵EB⊥AB∴∠ABE=90º∴∠ABE=∠DBC由(1)可知:△CBE是等边三角形∴EB=CB∴△ABE≌△DBC(SAS)∴AE=DC(3)①设AB与CD交于点G,∵△ABE≌△DBC∴∠EAB=∠CDB,又∵∠AGC=∠BGD∴∠AFD=∠ABD=60°.②∵△BCP为等腰三角形,如图,当BC=BP时,∠ABC=∠BCP+∠BPC=30°,∴∠BCP=15°,∴∠ACP=90°+15°=105°;当PC=PB时,∵∠ABC=30°,∴∠PCB=30°,∵∠ACB=90°,∴∠ACP=60°;当BP=BC时,∵∠ABC=30°,∴∠PCB=∠CPB=(180°-30°)=75°,∴∠ACP=90°-75°=15°.综上:∠ACP的度数为15º或60º或105º.【点睛】本题考查了垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质,综合性较强,解题时要善于利用已知条件,并且考虑多种情况分类讨论.20、(1)或;(2).【分析】(1)方程两边同时除以5,再利用平方根的定义即可(2)利用立方根的定义解方程即可【详解】(1)解:或(2)解:【点睛】本题主要考查了平方根与立方根的定义,熟记定义是解答本题的关键.21、(1)A奖品的单价是10元,B奖品的单价是15元;(2)当购买A种奖品1件,B种奖品25件时,费用W最小,最小为2元.【解析】试题分析:(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.试题解析:(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100-m)=-5m+1500∴,解得:70≤m≤1.∵m是整数,∴m=70,71,72,73,74,1.∵W=-5m+1500,∴k=-5<0,∴W随m的增大而减小,∴m=1时,W最小=2.∴应买A种奖品1件,B种奖品25件,才能使总费用最少为2元.考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用.22、(1)a=-1;(2)7;(3)点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6)【分析】(1)先由点P在正比例函数图象上求得n的值,再把点P坐标代入一次函数的解析式即可求出结果;(2)易求点B坐标,设直线AB与OP交于点C,如图,则点C坐标可得,然后利用△OBP的面积=S△BCO+S△BCP代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP的长,再分两种情况:当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】解:(1)把点P(4,n)代入y=x,得:n=×4=3,∴P(4,3),把P(4,3)代入y=ax+7得,3=4a+7,∴a=﹣1;(2)∵A(2,0),AB⊥x轴,∴B点的横坐标为2,∵点B在y=﹣x+7上,∴B(2,5),设直线AB与OP交于点C,如图1,当x=2时,,∴C(2,),∴△OBP的面积=S△BCO+S△BCP=2×(5﹣)+(4﹣2)×(5﹣)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴,当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ3,∴DQ3=DO=4,∴Q3(8,0),过点P作PF⊥y轴于点F,同理可得:FQ4=FO=3,∴Q4(0,6).综上所述,在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.23、(1)见解析;(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变,∠QMC=60°,理由见解析;(3)120.【分析】(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP即可;(2)由(1)可知△ABQ≌△CAP,所以∠BAQ=∠ACP,再根据三角形外角性质可求出∠QMC;(3)先证△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,再根据三角形外角性质可求出∠QMC;【详解】(1)证明:如图1,∵△ABC是等边三角形∴∠ABQ=∠CAP=60∘,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∴△ABQ≌△CAP(SAS);(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变,∠QMC=60°.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△ACM的外角,∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC∵∠BAC=60°,∴∠QMC=60°;(3)如图2,∵△ABC是等边三角形∴∠ABQ=∠CAP=60∘,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∴△ABQ≌△CAP(SAS);∴∠BAQ=∠ACP,∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°−∠PAC=180°−60°=120°,故答案为120.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《基础和声1》2021-2022学年第一学期期末试卷
- 吉首大学《操作系统》2021-2022学年期末试卷
- 《机床夹具设计》试卷11
- 吉林艺术学院《虚拟现实应用设计》2021-2022学年第一学期期末试卷
- 吉林艺术学院《民族音乐概论Ⅰ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《广播电视概论》2021-2022学年第一学期期末试卷
- 2024年公租房摊位出租协议书模板
- 2024年大枣代加工协议书模板范本
- 关于尾款支付的协议书范文模板
- 2022年公务员多省联考《申论》真题(陕西B卷)及答案解析
- 解码国家安全知到章节答案智慧树2023年国际关系学院
- 三年级家长会PPT语文教师用
- 中段考动员暨班级挑战赛活动方案
- 乔治华盛顿介绍George Washington
- 北京大兴国际机场工程策划
- 北师大版小学数学三年级上册第一单元《混合运算》 单元作业设计
- 社会保险业务申报表(申报1表)
- SAP全面预算管理解决方案BPC
- 经过校正的生化污泥培养营养元素投加量计算表20150627
- 2023年湖南化工职业技术学院单招职业适应性测试题库及答案解析
- 周围神经损伤PPT
评论
0/150
提交评论