2025届江苏省南京玄武区十三中学集团科利华八年级数学第一学期期末质量跟踪监视试题含解析_第1页
2025届江苏省南京玄武区十三中学集团科利华八年级数学第一学期期末质量跟踪监视试题含解析_第2页
2025届江苏省南京玄武区十三中学集团科利华八年级数学第一学期期末质量跟踪监视试题含解析_第3页
2025届江苏省南京玄武区十三中学集团科利华八年级数学第一学期期末质量跟踪监视试题含解析_第4页
2025届江苏省南京玄武区十三中学集团科利华八年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南京玄武区十三中学集团科利华八年级数学第一学期期末质量跟踪监视试题学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列运算,正确的是()A. B. C. D.2.下列式子为最简二次根式的是()A. B. C. D.3.下列命题中的真命题是()A.锐角大于它的余角 B.锐角大于它的补角C.钝角大于它的补角 D.锐角与钝角之和等于平角4.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①② B.③④ C.①②③ D.②③④5.一个多边形内角和是,则这个多边形的边数为()A. B. C. D.6.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.7.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.199.下列多项式中,能分解因式的是()A.m2+n2 B.-m2-n2 C.m2-4m+4 D.m2+mn+n210.使分式的值等于0的x的值是()A.-1 B.-1或5 C.5 D.1或-511.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()册数

0

1

2

3

4

人数

3

13

16

17

1

A.3,3 B.3,2 C.2,3 D.2,212.若,则下列各式中不一定成立的是()A. B. C. D.二、填空题(每题4分,共24分)13.在实数中:①,②,③,④,⑤0.8080080008…(相邻两个8之间0的个数逐次加1),⑥,无理数是_____________.(只填序号)14.一个三角形三边长分别是4,6,,则的取值范围是____.15.若点与点关于轴对称,则_______.16.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么的值是____.17.小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算一个内角,结果得到的和是2020°,则少算了这个内角的度数为_________.18.点P(-2,-3)到x轴的距离是_______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为.20.(8分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?21.(8分)定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为1,0的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为p,q,且BOD150,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为,且DOB30,求OM的长.22.(10分)大伟老师购买了一辆新车,加满油后,经过一段时间的试驾,得到一组行驶里程与剩余油量的数据:行驶里程x(km)和剩余油量y(L)的部分关系如表:x100200300350400y43362925.522(1)求出y与x之间的关系式;(2)大伟老师驾车到4158公里外的拉萨,问中途至少需要加几次油.23.(10分)已知y与成正比,当时,.(1)求y与x之间的函数关系式;(2)若点在这个函数图象上,求a的值.24.(10分)如图1,在中,,点为边上一点,连接BD,点为上一点,连接,,过点作,垂足为,交于点.(1)求证:;(2)如图2,若,点为的中点,求证:;(3)在(2)的条件下,如图3,若,求线段的长.25.(12分)分解因式:(1);(2).26.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相対于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象问答问题:(1)①直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系②A与B比较,速度快;③如果一直追下去,那么B(填能或不能)追上A;④可疑船只A速度是海里/分,快艇B的速度是海里/分(2)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(3)15分钟内B能否追上A?为什么?(4)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据合并同类项法则、同底数幂的乘法和同底数幂的除法逐一判断即可.【详解】解:A.,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.【点睛】此题考查的是合并同类项和幂的运算性质,掌握合并同类项法则、同底数幂的乘法和同底数幂的除法是解决此题的关键.2、B【分析】最简二次根式满足:被开方数不含分母;被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.【详解】A.,故不符合题意;B.是最简二次根式,符合题意;C.,故不符合题意;D.,故不符合题意.故选:B【点睛】本题考查最简二次根式的定义,掌握最简二次根式必须满足的两个条件是解题关键.3、C【详解】A、锐角大于它的余角,不一定成立,故本选项错误;B、锐角小于它的补角,故本选项错误;C、钝角大于它的补角,本选项正确;D、锐角与钝角之和等于平角,不一定成立,故本选项错误.故选C.4、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形,关键是找到图形的对称轴.5、C【分析】n边形的内角和为(n−2)180,由此列方程求n的值.【详解】设这个多边形的边数是n,则:(n−2)×180=720,解得n=6,故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.6、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【点睛】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.7、A【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.8、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.9、C【分析】观察四个选项,都不能用提公因式法分解,再根据平方差公式和完全平方公式的特点对各项进行判断即可.【详解】解:A、m2+n2不能分解因式,本选项不符合题意;B、-m2-n2不能分解因式,本选项不符合题意;C、,能分解因式,所以本选项符合题意;D、m2+mn+n2不能分解因式,本选项不符合题意.故选:C.【点睛】本题考查了多项式的因式分解,熟知平方差公式和完全平方公式的结构特征是解此题的关键.10、C【分析】分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵∴∴x1=5或x2=-1(舍去)故选C【点睛】此题考查解一元二次方程-因式分解法、分式的值为零的条件,解题关键在于使得分母≠1.11、B【解析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是1,故这组数据的众数为1.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).∴中位数是按第25、26名学生读数册数的平均数,为:2.故选B.12、D【分析】根据不等式的性质进行解答.【详解】A、在不等式的两边同时减去1,不等式仍成立,即,故本选项不符合题意.

B、在不等式的两边同时乘以3,不等式仍成立,即,故本选项不符合题意.

C、在不等式的两边同时乘以-1,不等号方向改变,即,故本选项不符合题意.

D、当时,不等式不一定成立,故本选项符合题意.

故选:D.【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.二、填空题(每题4分,共24分)13、①④⑤【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:无理数有①,④,⑤0.8080080008…(相邻两个8之间0的个数逐次加1),故答案为:①④⑤.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.14、【分析】根据三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,即可得出结论.【详解】解:∵一个三角形三边长分别是4,6,,∴6-4<<6+4解得:2<<10故答案为:.【点睛】此题考查的是根据三角形的两边长,求第三边的取值范围,掌握三角形的三边关系是解决此题的关键.15、【分析】利用关于y轴对称“纵坐标不变,横坐标互为相反数”求得m、n,进而得出答案.【详解】∵点与点关于轴对称,∴,,解得:,,∴.故答案为:.【点睛】本题主要考查了关于y轴对称点的性质以及负整数指数幂的概念,正确记忆横纵坐标的关系是解题关键.16、1.【解析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a-b)2=a2-2ab+b2即可求解.【详解】解:根据勾股定理可得a2+b2=13,

四个直角三角形的面积是:ab×4=13-1=12,即:2ab=12,

则(a-b)2=a2-2ab+b2=13-12=1.

故答案为:1.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.17、140°【分析】n边形的内角和是(n−2)•180°,少计算了一个内角,结果得2020°,则内角和是(n−2)•180°与2020°的差一定小于180度,并且大于0度.因而可以解方程(n−2)•180°≥2020°,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【详解】设多边形的边数是n,依题意有(n−2)•180°≥2020°,解得:n≥,则多边形的边数n=14;多边形的内角和是(14−2)•180=2160°;则未计算的内角的大小为2160°−2020°=140°.故答案为:140°.【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.18、1【分析】根据点到x轴的距离等于纵坐标的绝对值解答.【详解】解:点P(−2,−1)到x轴的距离是1.故答案为1.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值是解题的关键.三、解答题(共78分)19、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C点坐标代入正比例函数解析式可求得m,再把A、C坐标代入一次函数解析式可求得k、b,可求得答案;(2)先求出点B的坐标,然后根据三角形的面积公式即可得到结论;(3)由题意可分AB为直角边和AB为斜边两种情况,当AB为直角边时,再分A为直角顶点和B为直角顶点两种情况,此时分别设对应的D点为D2和D1,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,可证明△BED1≌△AOB(AAS),可求得D1的坐标,同理可求得D2的坐标,AD1与BD2的交点D3就是AB为斜边时的直角顶点,据此即可得出D点的坐标.【详解】(1)∵点C(m,4)在正比例函数y=x的图象上,∴m=4,解得:m=3,∴C(3,4),∵点C(3,4)、A(﹣3,0)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB为直角边和AB为斜边两种情况,当AB为直角边时,分A为直角顶点和B为直角顶点两种情况,如图,过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD1,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,∴OE=OB+BE=2+3=5,∴点D1的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D2的坐标为(﹣5,3),当AB为斜边时,如图,∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,设AD1的解析式为y=k1x+b1,将A(-3,0)、D1(-2,5)代入得,解得:,所以AD1的解析式为:y=5x+15,设BD2的解析式为y=k2x+b2,将B(0,2)、D2(-5,3)代入得,解得:,所以AD2的解析式为:y=x+2,解方程组得:,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).【点睛】本题考查了一次函数与几何综合题,涉及了待定系数法求函数解析式,直线交点坐标,全等三角形的判定与性质,等腰三角形的性质等,综合性较强,正确把握并能熟练运用相关知识是解题的关键.注意分类思想的运用.20、甲服装的成本是300元,乙服装的成本是200元.【分析】若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.【详解】设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%•(1+50%)x+90%•(1+40%)(500-x)-500=157,1.35x+630-1.26x-500=157,0.09x=27,x=300,则乙的成本价是:500-300=200(元).答:甲服装的成本为300元、乙服装的成本为200元.【点睛】注意此类题中的售价的算法:售价=定价×打折数.21、(1)2;(2);(3)【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M作MN⊥CD于N,根据已知得出,,求出∠MON=60°,根据含30度直角三角形的性质和勾股定理求出即可解决问题;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点,首先证明,求出,,然后过作,交延长线于,根据含30度直角三角形的性质求出,,再利用勾股定理求出EF即可.【详解】解:(1)由题意可知,在直线CD上,且在点O的两侧各有一个,共2个,故答案为:2;(2)过作于,∵直线于,,∴,∵,,∴,∴,∴;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点.∴,,∴,,,∴,∴△OEF是等边三角形,∴,∵,,∴,,∵,∴,过作,交延长线于,∴,在中,,则,在中,,,∴,∴.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.22、(1)(2)6【分析】(1)根据表格可知行驶里程x(km)和剩余油量y(L)的关系符合一次函数,故代入两组数据即可求解;(2)先求出加满油能行驶的距离,再求出x=4158,y的值,故可求解.【详解】(1)设y与x之间的关系式为y=kx+b(k≠0)把(100,43)、(200,36)代入得解得∴y与x之间的关系式为(2)令y=0,即,解得x=把4158÷≈5.8故中途至少需要加6次油.【点睛】此题主要考查一次函数的应用,解题的关键是根据题意求出一次函数解析式.23、(1);(2)a=2.5.【分析】首先设,再把,代入所设的关系式,即可算出k的值,进而得到y与x之间的函数关系式;把代入中所求的关系式即可得到a的值.【详解】解:设

当时,,

与x之间的函数关系式为;

点在这个函数图象上,

.【点睛】考查了求一次函数关系式,关键是掌握凡是图象经过的点必能满足解析式.24、(1)详见解析;(2)详见解析;(3)6【分析】(1)根据直角三角形的性质可得,,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得,进而可得,,然后即可根据AAS证明≌,可得,进一步即可证得结论;(3)连接,过点作交延长线于点,连接,如图1.先根据已知条件、三角形的内角和定理和三角形的外角性质推出,进而可得,然后即可根据SAS证明△ABE≌△ACH,进一步即可推出,过点作于K,易证△AKD≌△CHD,可得,然后即可根据等腰三角形的性质推得DF=2EF,问题即得解决.【详解】(1)证明:如图1,,,,,,,,;(2)证明:如图2,,,,,,,∵点为的中点,∴AD=CD,,≌(AAS),,,;(3)解:连接,过点作交延长线于点,连接,如图1.,,设,则,,,,,,,∴△ABE≌△ACH(SAS),,,过点作于K,,,,∴△AKD≌△CHD(AAS),,∵,,,.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论