版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省武汉武昌区四校联考八年级数学第一学期期末教学质量检测试题学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD的长为()A.3 B.5 C.4 D.不确定2.下列运算正确的是()A.x3+x3=2x6 B.x2·x4=x8C.(x2)3=x6 D.2x-2=3.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.104.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、5.如图,△ABC的面积计算方法是()A.ACBD B.BCEC C.ACBD D.ADBD6.下列语句正确的是()A.的立方根是2 B.-3是27的立方根C.的立方根是 D.的立方根是-17.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为Pn,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)8.学习了一元一次不等式的解法后,四位同学解不等式≥1时第一步“去分母”的解答过程都不同,其中正确的是()A.2(2x-1)-6(1+x)≥1 B.3(2x-1)-1+x≥6C.2(2x-1)-1-x≥1 D.3(2x-1)-1-x≥69.把分式中的x、y的值同时扩大为原来的10倍,则分式的值()A.缩小为原来的 B.不变C.扩大为原来的10倍 D.扩大为原来的100倍10.已知a、b、c是的三条边,且满足,则是()A.锐角三角形 B.钝角三角形C.等腰三角形 D.等边三角形二、填空题(每小题3分,共24分)11.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.12.已知关于x的方程无解,则__________.13.方程的根是______。14.在研究,,这三个数的倒数时发现:,于是称,,这三个数为一组调和数.如果,(),也是一组调和数,那么的值为____.15.已知点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),则的值为_____.16.如图,已知中,,,垂足为点D,CE是AB边上的中线,若,则的度数为____________.17.计算:____,_____.18.某鞋店有甲、乙两款鞋各30双,甲鞋每双200元,乙鞋每双50元,该店促销的方式为:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.打烊后得知.此两款鞋共卖得2750元,还剩鞋共25双,设剩甲鞋x双,乙鞋y双,则依题意可列出方程组三、解答题(共66分)19.(10分)小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y(米)与时间x(分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?20.(6分)在边长为的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形(三角形的三个顶点都在小正方形的顶点上)(1)写出的面积;(2)画出关于轴对称的;(3)写出点及其对称点的坐标.21.(6分)计算(1)(2)(3)(4)22.(8分)快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.23.(8分)实数在数轴上的位置如图所示,且,化简24.(8分)如图,已知CD∥BF,∠B+∠D=180°,求证:AB∥DE.25.(10分)问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.26.(10分)如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.求证:四边形ADCF是平行四边形.
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据同角的余角相等求出∠ACD=∠E,再利用“角角边”证明△ACD≌△BCE,根据全等三角形对应边相等可得AD=BC,AC=BE=7,然后求解BC=AC-AB=7-3=1.
故选:C.点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.2、C【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方运算法则和负整数指数幂的运算法则计算各项即得答案.【详解】解:A、x3+x3=2x3≠2x6,所以本选项运算错误;B、,所以本选项运算错误;C、(x2)3=x6,所以本选项运算正确;D、2x-2=,所以本选项运算错误.故选:C.【点睛】本题考查的是合并同类项、同底数幂的乘法、幂的乘方和负整数指数幂等运算法则,属于基础题型,熟练掌握基本知识是解题关键.3、C【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【详解】解:如图①点C以点A为标准,AB为底边,符合点C的有5个;
②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.
所以符合条件的点C共有9个.
故选:C.【点睛】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.4、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A.32+42=52,能构成直角三角形,故不符合题意;B.12+12=()2,能构成直角三角形,故不符合题意;C.82+122≠132,不能构成直角三角形,故符合题意;D.()2+()2=()2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5、C【分析】根据三角形的高线及面积可直接进行排除选项.【详解】解:由图可得:线段BD是△ABC底边AC的高线,EC不是△ABC的高线,所以△ABC的面积为,故选C.【点睛】本题主要考查三角形的高线及面积,正确理解三角形的高线是解题的关键.6、A【详解】解:A.的立方根是2,选项A符合题意.B.3是27的立方根,选项B不符合题意.C.的立方根是,选项C不符合题意.D.,1的立方根是1,选项D不符合题意.故选A.7、D【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.8、D【分析】根据不等式的解法判断即可.【详解】解:≥1不等式两边同时乘以分母的最小公倍数6可得:,故选:D【点睛】本题考查了解一元一次不等式,能正确根据不等式的基本性质进行去分母是解此题的关键.9、C【分析】根据分式的性质即可计算判断.【详解】x、y的值同时扩大为原来的10倍后,分式变为==10×,故扩大为原来的10倍,选C.【点睛】此题主要考查分式的性质,解题的关键是根据题意进行变形.10、C【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【详解】已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.故选C.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.二、填空题(每小题3分,共24分)11、.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【详解】∵甲每分钟行驶12÷30=(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-(千米)则每分钟乙比甲多行驶千米故答案为12、0或1【分析】根据分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,分类讨论当a=0时与a≠0时求出答案.【详解】解:去分母得:,即:,分情况讨论:①当整式方程无解时,,此时分式方程无解;②当分式方程无解时,即x=2,此时,则,解得:,故当或者时分式方程无解;故答案为:0或1【点睛】本题主要考查了分式方程无解的条件:去分母后所得的整式方程无解或者解这个整式方程的解使原分母为0,正确掌握解分式方程的步骤是解题的关键.13、0或-1【解析】由得+x=0,x(x+1)=0,x=0或x=-1故答案为:0或-114、1【分析】根据题中给出了调和数的规律,可将所在的那组调和数代入题中给出的规律里可列方程求解即可.【详解】由题意得:,解得:,
检验:把代入最简公分母:,
故是原分式方程的解.
故答案为:1.【点睛】本题主要考查了分式方程的应用,重点在于弄懂题意,准确地找出题目中所给的调和数的相等关系,这是列方程的关键.15、3【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得,a+b=10,b-1=1,计算出a、b的值,然后代入可得的值.【详解】解:∵点P(﹣10,1)关于y轴对称点Q(a+b,b﹣1),∴a+b=10,b﹣1=1,解得:a=8,b=2,则=+=2+=3,故答案为:3.【点睛】此题主要考查关于y轴对称点的坐标特点以及二次根式的加法运算,关键是掌握关于y轴对称点的坐标特点,即关于y轴对称的两点:横坐标互为相反数,纵坐标不变.16、【分析】本题可利用直角三角形斜边中线等于斜边的一半求证边等,并结合直角互余性质求解对应角度解题即可.【详解】∵∠ACB=,CE是AB边上的中线,∴EA=EC=EB,又∵∠B=,∴∠ACE=∠A=,∵,∴∠DCB=.故.故填:.【点睛】本题考查直角三角形性质,考查“斜中半”定理,角度关系则主要通过直角互余性质求解即可.17、【分析】根据零指数幂、负整数指数幂的意义可计算,根据积的乘方、以及单项式的除法可计算.【详解】1×=,.故答案为:,【点睛】本题考查了零指数幂、负整数指数幂、积的乘方、以及单项式的除法,熟练掌握运算法则是解答本题的关键.18、.【解析】试题分析:设剩甲鞋x双,乙鞋y双,由题意得,.考点:由实际问题抽象出二元一次方程组.三、解答题(共66分)19、(1)1700,10,35;(2)y=40x;(3)小明先到,这时爷爷离开山顶还有175米【分析】(1)根据图象信息即可求解;(2)根据待定系数法即可求解;(3)先求出小明花的时间,比较即可得出结论,然后根据爷爷的速度即可求得离山顶的距离.【详解】解:(1)根据图象知:爷爷行走的总路程是1700米,他在途中休息了10分钟,爷爷休息后行走的速度是:35米/分钟;(2)设函数关系式为可得:解得:∴函数关系式为:y=40x;(3)(分钟),(分钟)所以,从爷爷出发开始计时,小明50分钟到达山顶.因为爷爷用了55分钟,所以小明先到.这时爷爷离终点还有(55-50)×35=175(米)答:小明先到,这时爷爷离山顶还有175米.【点睛】此题主要考查观察函数图象和待定系数法求正比例函数解析式,正确读出函数图象的信息是解题关键.20、(1)7;(2)见解析;(3)A(-1,3),A1(1,3).【分析】(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴,从而得出BD⊥AC,然后根据三角形的面积公式求面积即可;(2)找到A、B、C关于y轴的对称点,然后连接、、即可;(3)由平面直角坐标系即可得出结论.【详解】解:(1)过点B作BD∥x轴交AC于点D,由图可知BD=2,AC=7,AC⊥x轴∴BD⊥AC∴S△ABC=(2)找到A、B、C关于y轴的对称点,然后连接、、,如下图所示:即为所求.(3)由平面直角坐标系可知:点A(-1,3),点A1(1,3).【点睛】此题考查的是求平角直角坐标系中三角形的面积、画已知三角形关于y轴的对称图形和根据坐标系写点的坐标,掌握三角形的面积公式和关于y轴对称的图形的画法是解决此题的关键.21、(1);(2);(3);(4)【分析】(1)先化简二次根式,然后合并同类项,即可得到答案.(2)利用完全平方公式和平方差公式进行计算,然后合并同类项即可;(3)先去括号,然后移项,合并同类项,系数化为1,即可得到答案;(4)先去分母,去括号,然后移项,合并同类项,系数化为1,即可得到答案;【详解】解:(1)==;(2)==;(3),∴,∴,∴;(4),∴,∴,∴.【点睛】本题考查了实数的混合运算,二次根式的混合运算,以及解一元一次不等式,解题的关键是熟练掌握运算法则进行计算.22、(1)300,75,60;(2)y1=100x﹣150(3≤x≤4.5);(3)点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A、B两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E坐标,根据快车比慢车提前0.5小时到达目的地可得点C坐标,然后利用待定系数法求解即可;(3)易得y2与x之间的函数关系式,然后只要求直线EC与直线OD的交点即得点F坐标,为此只要解由直线EC与直线OD的的解析式组成的方程组即可,进而可得点F的实际意义.【详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E的横坐标为:2+1=3,则点E的坐标为(3,150),快车从点E到点C用的时间为:300÷60﹣0.5=4.5(小时),则点C的坐标为(4.5,300),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,把E、C两点代入,得:,解得:,即线段EC所表示的y1与x之间的函数表达式是y1=100x﹣150(3≤x≤4.5);(3)y2与x之间的函数关系式为:,设点F的横坐标为a,则60a=100a﹣150,解得:a=3.75,则60a=225,即点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【点睛】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.23、【分析】直接利用二次根式的性质以及结合数轴得出a、b的取值范围进而化简即可.【详解】解:由数轴及可得:
a<0<b,a+b<0,∴==-a+(a+b)=b故答案为b.【点睛】本题考查二次根式的性质与化简,正确得出a的取值范围是解题的关键.24、见解析【分析】利用平行线的性质定理可得∠BOD=∠B,等量代换可得∠BOD+∠D=180°,利用同旁内角互补,两直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程通风施工合同样本
- 2024年企业电脑配备与维护服务合同
- 2024区块链技术在供应链管理应用的合作协议
- 2024厨房用品生产商与餐饮公司之间的产品销售合同
- 0kv线路施工设计与施工协调合同04
- 2024年场地出租合同
- 2024年工程设计专属:房产建筑创新方案合同
- 2023年中铝集团包头铝业有限公司新能源项目招聘考试真题
- 2024年国际物流供应链优化合作协议
- 2024全新版权转让与授权合同
- 粤教版科学四年级上册全册试卷(含答案)
- 如何提高医务人员的个人防护装备使用效率
- 公共服务质量评价指标体系
- 江西省2023年高等职业院校单独招生考试-江西电力职业技术学院-样卷
- 《热力学基础 》课件
- 完整版体检中心应急预案
- 无人机培训教材
- 人教版必修四苏武传3课时课件
- 六年级《牵手两代-第二讲-乖孩子为什么会厌学》家长课程培训
- #2蓄电池组充放电试验报告
- 电动伸缩门施工方案
评论
0/150
提交评论