




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省泉州市惠安科山中学数学八年级第一学期期末达标检测模拟试题标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,下列各式中正确的是()A. B.C. D.2.在,,,中分式的个数有()A.2个 B.3个 C.4个 D.5个3.如图,四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为(8,6),将沿OB翻折,A的对应点为E,OE交BC于点D,则D点的坐标为()A.(,6) B.(,6) C.(,6) D.(,6)4.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°5.下列说法正确的是()A.若=x,则x=0或1 B.算术平方根是它本身的数只有0C.2<<3 D.数轴上不存在表示的点6.如图,已知△ABC,AB=5,∠ABC=60°,D为BC边上的点,AD=AC,BD=2,则DC=()A.0.5 B.1 C.1.5 D.27.下列运算中,错误的是()A. B. C. D.8.如图,点在线段上,且,,补充一个条件,不一定使成立的是()A. B. C. D.9.一副三角板有两个直角三角形,如图叠放在一起,则的度数是()A.165° B.120° C.150° D.135°10.四根小棒的长分别是5,9,12,13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,其中是直角三角形的是()A.5,9,12 B.5,9,13 C.5,12,13 D.9,12,13二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠C=90°,以点A为圆心,任意长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC于点D,若CD=3,P为AB上一动点,则PD的最小值为_____.12.若,,则的值是_________.13.如图,在平面直角坐标系中,矩形的两边分别在坐标轴上,,.点是线段上的动点,从点出发,以的速度向点作匀速运动;点在线段上,从点出发向点作匀速运动且速度是点运动速度的倍,若用来表示运动秒时与全等,写出满足与全等时的所有情况_____________.14.如图,长方形纸片ABCD中,AB=6,BC=8,折叠纸片使AB边与对角线AC重合,点B与点F重合,折痕为AE,则EF的长是_________.15.计算:___.16.若点和点关于轴对称,则__________.17.如图,BE⊥AC,垂足为D,且AD=CD,BD=ED.若∠ABC=54°,则∠E=________°.18.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=_______三、解答题(共66分)19.(10分)(1)解方程:﹔(2)已知,,求代数式的值.20.(6分)小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.(1)如图①,M为边AC上一点,则BD、MF的位置关系是
;如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是
;如图③,M为边AC延长线上一点,则BD、MF的位置关系是
;(2)请就图①、图②、或图③中的一种情况,给出证明.21.(6分)如图,在四边形中,,点是边上一点,,.(1)求证:.(2)若,,求的长.22.(8分)为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.组别睡眠时间根据图表提供的信息,回答下列问题:(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.23.(8分)解下列不等式(组):(1)(2).24.(8分)在平面直角坐标系中,每个小方格的边长为一个单位长度.(1)点的坐标为.点的坐标为.(2)点关于轴对称点的坐标为;(3)以、、为顶点的三角形的面积为;(4)点在轴上,且的面积等于的面积,点的坐标为.25.(10分)先化简,再求值.,其中26.(10分)已知:点D是等边△ABC边上任意一点,∠ABD=∠ACE,BD=CE.(1)说明△ABD≌△ACE的理由;(2)△ADE是什么三角形?为什么?
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.2、B【分析】由题意根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:,,,中分式有,,共计3个.故选:B.【点睛】本题主要考查分式的定义,解题的关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.3、D【分析】根据翻折的性质及勾股定理进行计算即可得解.【详解】∵四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为∴OC=AB=6,BC=OA=8,,,BC//OA∴∵将沿OB翻折,A的对应点为E∴∴∴OD=BD设CD=x,则在中,∴解得:∴点D的坐标为,故选:D.【点睛】本题主要考查了翻折的性质,熟练掌握翻折及勾股定理的计算是解决本题的关键.4、C【分析】根据三角板可得:∠2=60°,∠5=45°,然后根据三角形内角和定理可得∠2的度数,进而得到∠4的度数,再根据三角形内角与外角的关系可得∠1的度数.【详解】解:由题意可得:∠2=60°,∠5=45°,∵∠2=60°,∴∠3=180°−90°−60°=30°,∴∠4=30°,∴∠1=∠4+∠5=30°+45°=75°,故选:C.【点睛】此题主要考查了三角形内角和定理,三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.5、C【分析】根据算术平方根,立方根,实数和数轴的关系逐个判断即可.【详解】A、若=x,则x=0或±1,故本选项错误;B、算术平方根是它本身的数有0和1,故本选项错误;C、2<<3,故本选项正确;D、数轴上的点可以表示无理数,有理数,故本选项错误;故选:C.【点睛】本题考查了算术平方根,立方根,实数和数轴的关系的应用,主要考查学生的辨析能力和理解能力.6、B【分析】过点A作AE⊥BC,得到E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,求出BE=,进而求出DE=-2=,即可求CD.【详解】过点A作AE⊥BC.∵AD=AC,∴E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,∴BE=.∵BD=2,∴DE=﹣2=,∴CD=1.故选:B.【点睛】此题考查等腰三角形与直角三角形的性质;熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.7、D【解析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.据此作答.【详解】解:A、分式的分子、分母同时乘以同一个非1的数c,分式的值不变,故A正确;
B、分式的分子、分母同时除以同一个非1的式子(a+b),分式的值不变,故B正确;
C、分式的分子、分母同时乘以11,分式的值不变,故C正确;
D、,故D错误.
故选D.【点睛】本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为1.8、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL依次对各选项分析判断即可.【详解】∵,∴BC=EF.A.若添加,虽然有两组边相等,但∠1与∠2不是它们的夹角,所以不能判定,符合题意;B.若添加在△ABC和△DEF中,∵,,BC=EF,∴(SAS),故不符合题意;C.若添加在△ABC和△DEF中,∵,,BC=EF,∴(AAS),故不符合题意;D.若添加在△ABC和△DEF中,∵,BC=EF,,∴(ASA),故不符合题意;故选A.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9、A【分析】先根据直角三角形两锐角互余求出∠1,再由邻补角的定义求得∠2的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求得的度数.【详解】∵图中是一副三角板,∴∠1=45°,∴∠2=180°-∠1=180°-45°=135°,∴=∠2+30°=135°+30°=165°.故选A.【点睛】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10、C【分析】当一个三角形中,两个较小边的平方和等于较大边的平方,则这个三角形是直角三角形.据此进行求解即可.【详解】A、52+92=106≠122=144,故不能构成直角三角形;B、52+92=106≠132=169,故不能构成直角三角形;C、52+122=169=132,故能构成直角三角形;D、92+122=225≠132=169,故不能构成直角三角形,故选C.二、填空题(每小题3分,共24分)11、3【解析】根据角平分线的作法可知,AD是∠BAC的平分线,再根据角平分线上的点到角的两边距离相等,即可求解.【详解】根据作图的过程可知,AD是∠BAC的平分线.根据角平分线上的点到角的两边距离相等,又因为点到直线的距离,垂线段最短可得PD最小=CD=3.故答案为:3.【点睛】本题考查的知识点是基本作图,解题关键是掌握角平分线的做法和线段垂直平分线的判定定理.12、1【分析】首先提取公因式,进而将已知代入求出即可.【详解】,,.故答案为:1.【点睛】此题考查因式分解,整式的求值计算,将多项式分解因式后进行计算较为简便.13、或【分析】当和全等时,得到OA=CQ,OQ=PC或OA=PC,OQ=QC,代入即可求出a、t的值.【详解】当和全等时,OA=CQ,OQ=PC或OA=PC,OQ=QC∵OA=8=BC,PC=2t,OQ=2at,QC=12−2at,代入得:或,解得:t=2,a=1,或t=4,a=,∴的所有情况是或故答案为:或.【点睛】本题主要考查了矩形的性质,全等三角形的性质和判定,坐标与图形的性质等知识点,解此题的关键是正确分组讨论.14、1【分析】求出AC的长度;证明EF=EB(设为x),利用等面积法求出x即可解决问题.【详解】解:∵四边形ABCD为矩形,
∴∠B=90°,
由勾股定理得:AC2=AB2+BC2,
∴AC=10;
由题意得:
∠AFE=∠B=90°,
AF=AB=6,EF=EB(设为x),∴,即,解得.故答案为:1.【点睛】本题考查折叠的性质,矩形的性质.掌握等面积法是解题关键.15、-6【分析】利用零指数幂、负整数指数幂以及乘方的意义计算即可得到结果.【详解】故答案是:【点睛】本题综合考查了乘方的意义、零指数幂以及负整数指数幂.在计算过程中每一部分都是易错点,需认真计算.16、-3【分析】根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,求出a、b,代入即可.【详解】解:∵点和点关于轴对称∴a=-5,b=2∴故答案为:.【点睛】此题考查的是关于y轴对称的两点坐标关系,掌握关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等是解决此题的关键.17、27【解析】∵BE⊥AC,AD=CD,
∴AB=CB,即△ABC为等腰三角形,
∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,
在△ABD和△CED中,,∴△ABD≌△CED(SAS),
∴∠E=∠ABE=27°.
故答案是:27.18、30°【解析】由折叠的性质可知∠B=∠AEB,因为E点在AC的垂直平分线上,故EA=EC,可得∠EAC=∠C,根据外角的性质得∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,由此可求∠C.解:由折叠的性质,得∠B=∠AEB,∵E点在AC的垂直平分线上,∴EA=EC,∴∠EAC=∠C,由外角的性质,可知∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,即2∠C+∠C=90°,解得∠C=30°.故本题答案为:30°.本题考查了折叠的性质,线段垂直平分线的性质.关键是把条件集中到直角三角形中求解.三、解答题(共66分)19、(1);(2)18【分析】(1)根据分式方程的解法直接进行求解即可;(2)先对整式进行因式分解,然后整体代入求解即可.【详解】解:(1)去分母得:,整理解得:;经检验是原方程的解;(2)=,把,代入求解得:原式=.【点睛】本题主要考查分式方程及因式分解,熟练掌握各个运算方法是解题的关键.20、(1)BD∥MF,BD⊥MF,BD⊥MF;(2)证明见解析.【详解】试题分析:(1)平行;垂直;垂直;(2)选①证明BD∥MF理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠AME=360°﹣90°×2=180°,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠ABC,∠AMF=∠AME,∴∠ABD+∠AMF=(∠ABC+∠AME)=90°,又∵∠AFM+∠AMF=90°,∴∠ABD=∠AFM,∴BD∥MF.选②证明BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠C=∠AME+∠C=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠ABD+∠ADB=90°,∴∠AMF+∠ADB=90°,∴BD⊥MF.选③证明BD⊥MF.理由如下:∵∠A=90°,ME⊥BC,∴∠ABC+∠ACB=∠AME+∠ACB=90°,∴∠ABC=∠AME,∵BD平分∠ABC,MF平分∠AME,∴∠ABD=∠AMF,∵∠AMF+∠F=90°,∴∠ABD+∠F=90°,∴BD⊥MF.考点:1.平行线的判定;2.角平分线的性质21、(1)见解析;(2)【分析】(1)根据“∠B=90°,AC⊥CD”得出∠2=∠BAC,即可得出答案;(2)由(1)可得AC=CD,并根据勾股定理求出AC的值,再次利用勾股定理求出AD的值,即可得出答案.【详解】(1)证明:∵,∴.∵,∴,∴.在和中,.(2)解:∵,∴,.∵,∴在中,,∵,∴在中,.【点睛】本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出.22、(1),对应扇形的圆心角度数为18;(2)该区八年级学生睡眠时间合格的共有人;(3)该区八年级学生的平均睡眠时间为小时.【分析】(1)根据各部分的和等于1即可求得,然后根据圆心角的度数=360×百分比求解即可;(2)合格的总人数=八年级的总人数×八年级合格人数所占百分比;(3)分别计算B、C、D三组抽取的学生数,然后根据平均数的计算公式即可求得抽取的B、C、D三组学生的平均睡眠时间,即可估计该区八年级学生的平均睡眠时间.【详解】(1)根据题意得:;
对应扇形的圆心角度数为:360×5%=18;(2)根据题意得:(人),则该区八年级学生睡眠时间合格的共有人;(3)∵抽取的D组的学生有15人,∴抽取的学生数为:(人),∴B组的学生数为:(人),C组的学生数为:(人),∴B、C、D三组学生的平均睡眠时间:(小时),该区八年级学生的平均睡眠时间为小时.【点睛】本题主要考查的是扇形统计图的认识以及用样本估计总体,弄清题中的数据是解本题的关键.23、(1)x<-1;(2)x≤-3.【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1),∴,∴,∴;(2),解不等式①,得:;解不等式②,得:;∴不等式组的解集为:.【点睛】本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.24、(1);;(2);(3)6;(4);【分析】(1)根据图形可得出点的坐标即可;
(2)根据关于x轴对称点的坐标特点:横坐标相等,纵坐标互为相反数,即可得出结果;
(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海长期服务合同
- 各管路的护理注意事项
- 现代礼仪(第2版)课件 1-4-谈吐礼仪:大学生的沟通之道
- 产后尿毒症患者的护理
- 2025年内蒙古自治区农村土地承包合同条例
- 2025工程设计承包合同范本(标准版)
- 提升客户体验的项目实施方案
- 基于AI的智能仓储管理平台升级改造方案
- 2025年标准委托加工合同协议书范本示例
- 围手术期基础护理
- 2024年江苏省苏州市保安员资格考试模拟练习题及答案
- 2024年高速数据传输线项目可行性研究报告
- 医疗机构医疗废物管理规范考试试题及答案
- 阀门行业数字化转型
- 旅游车司机服务质量培训
- 宾馆装修明细合同模板
- 北京工业大学《软件工程(双语)》2023-2024学年期末试卷
- 2024版义务教育小学科学课程标准
- 八年级学生学情分析-20211031092110
- 2024年继续教育公需课考试题目及答案
- 林下经济项目方案
评论
0/150
提交评论