2025届甘肃省平凉市泾川县数学八上期末复习检测试题含解析_第1页
2025届甘肃省平凉市泾川县数学八上期末复习检测试题含解析_第2页
2025届甘肃省平凉市泾川县数学八上期末复习检测试题含解析_第3页
2025届甘肃省平凉市泾川县数学八上期末复习检测试题含解析_第4页
2025届甘肃省平凉市泾川县数学八上期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省平凉市泾川县数学八上期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.实数0,,﹣π,0.1010010001…,,其中无理数出现的频率是()A.20% B.40% C.60% D.80%2.我们知道方程x2+2x-3=0的解是x1=1,x2=-3,现给出另一个方程(2x+3)2+2(2x+3)-3=0,它的解是().A.x1=1,x2=3 B.x1=1,x2=-3C.x1=-1,x2=3 D.x1=-1,x2=-33.现有两根木棒长度分别是厘米和厘米,若再从下列木棒中选出一根与这两根组成一个三角形(根木棒首尾依次相接),应选的木棒长度为()A.厘米 B.厘米 C.厘米 D.厘米4.下列四组线段中,可以构成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.1,,35.若点、在直线上,且,则该直线所经过的象限是()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第四象限6.下列计算正确的是()A.=2 B.﹣=2C.=1 D.=3﹣27.在平面直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.8.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为()A.2a+b B.4a+b C.a+2b D.a+3b9.如图,在平面直角坐标系中,点A坐标为(2,2),作AB⊥x轴于点B,连接AO,绕原点B将△AOB逆时针旋转60°得到△CBD,则点C的坐标为()A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)10.如图,在▱ABCD中,AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为()A.2.6 B.1.4 C.3 D.2二、填空题(每小题3分,共24分)11.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________.12.分解因式:___________.13.计算:_____;14.比较大小:__________15.为保证数据安全,通常会将数据经过加密的方式进行保存,例如:将一个多项式因式分解为,当时,,,将得到的三个数字按照从小到大的顺序排列得到加密数据:192021,根据上述方法.当时,多项式分解因式后形成的加密数据是______.16.如图,将一块直角三角板放置在锐角上,使得该三角板的两条直角边、恰好分别经过、,若,则=_________.17.如图示在△ABC中∠B=.18.如果方程组的解满足,则的值为___________.三、解答题(共66分)19.(10分)(1)计算:;(2)分解因式:.20.(6分)如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?21.(6分)计算:(1)(2)(3)(4).22.(8分)如图,OC平分∠AOB,OA=OB,PD⊥AC于点D,PE⊥BC于点E,求证:PD=PE.23.(8分)如图,已知为等边三角形,为上一点,为等边三角形.(1)求证:;(2)与能否互相垂直?若能互相垂直,指出点在上的位置,并给予证明;若与不能垂直,请说明理由.24.(8分)如图在中,,将三角板中30度角的顶点D放在AB边上移动,使这个30度角的两边分别与的边AC,BC相交于点E,F,且使DE,始终与AB垂直(1)求证:是等边三角形(2)若移动点D,使EF//AB时,求AD的长25.(10分)已知a,b,c为△ABC的三边长,且.(1)求a,b值;(2)若△ABC是等腰三角形,求△ABC的周长.26.(10分)小山同学结合学习一次函数的经验和自己的思考,按以下方式探究函数的图象与性质,并尝试解决相关问题.请将以下过程补充完整:(1)判断这个函数的自变量x的取值范围是________________;(2)补全表格:(3)在平面直角坐标系中画出函数的图象:(4)填空:当时,相应的函数解析式为___(用不含绝对值符合的式子表示);(5)写出直线与函数的图象的交点坐标.

参考答案一、选择题(每小题3分,共30分)1、C【分析】由于开方开不尽的数的方根、无限不循环小数是无理数,根据无理数的定义即可判断选择项.【详解】解:在实数0,,−π,0.1010010001…,,其中无理数有,﹣π,0.1010010001…这3个,则无理数出现的频率为:3÷5×100%=60%,故选:C.【点睛】本题考查了无理数的定义和频率的计算,解题的关键是无理数的定义准确找出无理数.2、D【分析】将作为一个整体,根据题意,即可得到的值,再通过求解一元一次方程,即可得到答案.【详解】根据题意,得:或∴或故选:D.【点睛】本题考查了一元一次方程、一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.3、B【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.求出第三边的范围就可以求解.【详解】应选取的木棒的长的范围是:,

即.

满足条件的只有B.

故选:B.【点睛】本题考查的是三角形的三边关系,即三角形任意两边之和大于第三边;任意两边之差小于第三边.4、B【分析】根据勾股定理逆定理进行分析.【详解】A.22+32≠42,不能构成直角三角形;B.32+42=52,可以构成直角三角形;C.42+52≠62,不能构成直角三角形;D.12+(2≠32,不能构成直角三角形.故选B【点睛】本题考核知识点:勾股定理逆定理.解题关键点:熟记勾股定理逆定理.5、B【分析】通过比较直线上两点的坐标大小,即可判断该一次函数的增减性,从而判断其所经过的象限.【详解】解:在直线上两点、满足:a<a+1,∴此函数y随x的增大而减小∴k<0,∵2>0∴该直线经过第一、二、四象限故选B.【点睛】此题考查的是判断直线所经过的象限,掌握一次函数的增减性与各项系数的关系是解决此题的关键.6、C【分析】利用二次根式的加减法对、进行判断;根据二次根式的乘法法则对进行判断;利用完全平方公式对进行判断.【详解】解:、,所以选项错误;、,所以选项错误;、,所以选项正确;、,所以选项错误.故选:.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7、B【解析】根据关于y轴对称的点横坐标互为相反数,纵坐标相等进行解答即可.【详解】∵(m、n)关于y轴对称的点的坐标是(-m、n),∴点M(-3,-6)关于y轴对称的点的坐标为(3,-6),故选B.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握关于y轴对称的点的坐标特征是解题的关键.8、A【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.9、A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,2),∴OB=2,AB=2∴Rt△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=2,∠CBE=30°,∴CE=BC=,BE=EC=3,∴OE=1,∴点C的坐标为(﹣1,),故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.10、B【分析】由平行四边形ABCD中,BE平分∠ABC,可证得△BCE是等腰三角形,继而利用DE=CE-CD,求得答案.【详解】解:四边形是平行四边形,,,.平分,,,,.故选:.【点睛】此题考查了平行四边形的性质,能证得△BCE是等腰三角形是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】由等量关系为利润=售价-进价,利润率=%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得;故答案为:.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.12、a(x+3)(x-3)【详解】解:故答案为13、【分析】根据多项式乘多项式的法则计算即可.【详解】解:(3m-1)(2m-1)

=6-2m-3m+1

=.

故答案为:.【点睛】本题考查多项式乘多项式,掌握运算法则是解题的关键.14、>【分析】根据二次根式的性质,对、进行变形,进而即可得到答案.【详解】∵=,=,>,∴>,故答案是:>.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.15、1【分析】先将多项式分解因式,再计算当时各个因式的值,然后将得到的各因式的数字按照从小到大的顺序排列即得答案.【详解】解:,当时,,.∴多项式分解因式后形成的加密数据是:1.故答案为:1.【点睛】本题考查了多项式的因式分解,属于基本题型,正确理解题意、熟练掌握分解因式的方法是解答的关键.16、50°【分析】根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据直角三角形两锐角互余的关系得到∠DBC+∠DCB=90°,由此即可得到答案.【详解】∵∠A+∠ABC+∠ACB=180°,,∴∠ABC+∠ACB=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴=(∠ABC+∠ACB)-(∠DBC+∠DCB)=50°,故答案为:50°.【点睛】此题考查三角形的内角和定理,直角三角形两锐角互余的关系,所求角度不能求得每个角的度数时,可将两个角度的和求出,这是一种特殊的解题方法.17、25°.【解析】试题分析:∵∠C=90°,∴∠B=90°﹣∠A=90°﹣65°=25°;故答案为25°.考点:直角三角形的性质.18、【分析】先利用方程组求出a的值,再代入求解即可得.【详解】②①得:,即由题意得:解得将代入得:故答案为:.【点睛】本题考查了二元一次方程组的解定义、代数式的化简求值等知识点,掌握理解二元一次方程组的解定义是解题关键.三、解答题(共66分)19、(1);(2).【分析】(1)先计算积的乘方和同底数幂相乘,再合并同类项,即可得到答案;(2)先去括号进行计算,然后合并同类项,再进行因式分解,即可得到答案.【详解】解:(1)解:;(2)原式.【点睛】本题考查了因式分解,整式乘法的运算法则,解题的关键是熟练掌握运算法则进行计算.20、(1)120,2,1;(2)线段PM所表示的y与x之间的函数表达式是y=﹣60x+300,线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.【分析】(1)根据题意和图象中的数据,可以求得a、b的值以及AB两地之间的距离;(2)根据(1)中的结果和函数图象中的数据,可以求得线段PM、MN所表示的y与x之间的函数表达式;(3)根据题意,可以写出甲、乙两车距离车站C的路程之和和s之间的函数关系式,然后利用一次函数的性质即可解答本题.【详解】(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=1.故答案为:120,2,1;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+1,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣1,则当x=5时,s取得最小值,此时s=180,由上可得:行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.21、(1);(2);(3);(4).【分析】(1)先化成最简二次根式,然后合并同类二次根式即可;(2)先化成最简二次根式,然后合并同类二次根式即可;(3)根据二次根式的混合运算的法则计算即可;(4)根据二次根式的混合运算的法则计算即可.【详解】解:(1)原式=(2)原式=(3)原式=(4)原式===【点睛】本题考查二次根式的混合运算,掌握二次根式的化简、二次根式的混合运算法则是解题的关键.22、详见解析.【解析】根据OC平分∠AOB,得到∠AOC=∠BOC,证得△AOC≌△BOC,根据全等三角形的性质得到∠ACO=∠BCO,根据角平分线的性质即可得到结论.【详解】∵OC平分∠AOB,∴∠AOC=∠BOC.在△AOC和△BOC中,∵OC=OC,∠AOC=∠BOC,OA=OB,∴△AOC≌△BOC(SAS),∴∠ACO=∠BCO.又∵PD⊥AC,PE⊥BC,∴PD=PE.【点睛】本题考查了全等三角形的判定和性质,角平分线的定义和性质,熟练掌握全等三角形的判定定理是解题的关键.23、(1)见解析;(2)AQ与CQ能互相垂直,此时点P在BC的中点【分析】(1)根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可.

(2)根据等腰三角形性质求出∠BAP=30°,求出∠BAQ=90°,根据平行线性质得出∠AQC=90°,即可得出答案.【详解】(1)证明:∵△ABC和△APQ是等边三角形,

∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,

∴∠BAP=∠CAQ=60°-∠PAC,

在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),

∴∠ACQ=∠B=60°=∠BAC,

∴AB∥CQ;(2)AQ与CQ能互相垂直,此时点P在BC的中点,

证明:∵当P为BC边中点时,∠BAP=∠BAC=30°,

∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,

又∵AB∥CQ,

∴∠AQC=90°,

即AQ⊥CQ.【点睛】本题考查了等边三角形性质,全等三角形的性质和判定,平行线性质和判定,等腰三角形性质的应用,主要考查学生的推理能力.24、(1)见解析;(2)【分析】(1)由已知可得∠FDB=60°,∠B=60°,从而可得到△BDF是等边三角形;(2)设AD=x,CF=y,求出y与x之间的关系式,当EF∥AB时,∠CEF=30°,∠FED=∠EDA=90°,CF=EF,EF=DF,代入计算即可求得AD的长.【详解】解:(1)∵ED⊥AB,∠EDF=30°,∴∠FDB=60°,

∵∠A=30°,∠ACB=90°,∴∠B=60°,

∴∠DFB=60°,∴△BDF是等边三角形;(2)设AD=x,CF=y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论