版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届新疆博乐市第九中学数学八年级第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知是一个完全平方式,则等于()A.8 B. C. D.2.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.63.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形的面积等于一条边的长与该边上的高的乘积的一半D.同位角相等4.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D5.如图,在中,,点是边上的一点,点是的中点,若的垂直平分线经过点,,则()A.8 B.6 C.4 D.26.下列选项中的汽车品牌标志图,不是轴对称图形的是()A. B. C. D.7.在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为()A. B.+2 C.3 D.48.如果关于x的方程无解,则m的值是()A.2 B.0 C.1 D.–29.在中,作边上的高,以下画法正确的是()A. B. C. D.10.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.-3xy C.-1 D.111.如图,,点在线段上,点在线段上,,,则的长度为()A. B. C. D.无法确定12.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折 B.八折 C.七折 D.六折二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.14.如图,中,平分,平分,若,则__________15.如图,在△ABC中,BF⊥AC于点F,AD⊥BC于点D,BF与AD相交于点E.若AD=BD,BC=8cm,DC=3cm.则AE=_______________cm
.16.中,边的垂直平分线交于点,交的外角平分线于点,过点作交的延长线于点,连接,.若,,那么的长是_________.17.计算:___________________.18.如图,直线,∠1=42°,∠2=30°,则∠3=______度.三、解答题(共78分)19.(8分)某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?20.(8分)如图,在平面直角坐标系中,的三个顶点分别为,,.把向上平移个单位后得到,请画出;已知点与点关于直线成轴对称,请画出直线及关于直线对称的.在轴上存在一点,满足点到点与点距离之和最小,请直接写出点的坐标.
21.(8分)某地有两所大学和两条相交叉的公路,如图所示(点M,N表示大学,AO,BO表示公路)现计划修建一座图书馆,希望图书馆到两所大学的距离相等,到两条公路的距离也相等.你能确定图书馆应该建在什么位置吗?在所给的图形中画出你的设计方案.(保留作图痕迹,不写作法)22.(10分)已知:如图,把向上平移个单位长度,再向右平移个单位长度,得到;(1)写出的坐标;(2)求出的面积;(3)点在轴上,且与的面积相等,求点的坐标.23.(10分)正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.24.(10分)已知:∠1=∠2,∠3=∠1.求证:AC=AD25.(12分)如图,一个直径为10cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,求筷子长度.26.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】本题考查的是完全平方公式的应用,首尾是a和8b的平方,所以中间项应为a和8b的乘积的2倍.【详解】∵a2-N×ab+64b2是一个完全平方式,
∴这两个数是a和8b,
∴Nab=±1ab,
解得N=±1.
故选:C.【点睛】此题考查完全平方公式的结构特征,两数的平方和加上或减去它们乘积的2倍,根据平方项确定出这两个数是求解的关键.2、A【详解】作DE⊥AB于E,∵AB=10,S△ABD=15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.3、D【分析】根据三角形内角和定理对A进行判断;根据三角形三边的关系对B进行判断;根据三角形面积公式对C进行判断;根据同位角的定义对D进行判断.【详解】A、三角形三个内角的和等于180°,所以A选项为真命题;
B、三角形两边之和大于第三边,所以B选项为真命题;
C、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以C选项为真命题,
D、两直线平行,同位角相等,所以D选项为假命题.
故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、B【解析】由题意知(10,20)表示向东走10米,再向北走20米,故为B点.5、C【分析】根据线段垂直平分线的性质可得,再根据直角三角形斜边中线定理即可求得答案.【详解】解:∵的垂直平分线经过点,∴,∵,点是的中点,∴,故选:C.【点睛】本题考查了线段垂直平分线的性质,直角三角形斜边中线定理.6、C【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、B、D是轴对称图形,故不符合题意;C不是轴对称图形,符合题意.故选C.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.7、A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题解析:当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴P′R=∴PQ+QR的最小值为故选A.考点:一次函数综合题.8、A【分析】先求得分式方程的增根为x=3,再将原方程化为整式方程,然后把方程的增根x=3代入即可求得m的值.【详解】解:方程去分母得:m+1﹣x=0,解得x=m+1,当分式方程分母为0,即x=3时,方程无解,则m+1=3,解得m=2.故选A.【点睛】本题主要考查分式方程无解的条件:(1)去分母后所得整式方程无解;(2)解去分母后的整式方程得到的解使原方程的分母等于0.9、D【分析】作哪一条边上的高,即从所对的顶点向这条边或这条边的延长线作垂线段即可.【详解】解:在中,画出边上的高,即是过点作边的垂线段,正确的是D.
故选D.【点睛】本题考查了画三角形的高,熟练掌握高的定义是解题的关键.10、A【详解】解:∵左边=-3xy(4y-2x-1)=-12xy2+6x2y+3xy右边=-12xy2+6x2y+□,∴□内上应填写3xy故选:A.11、C【解析】根据题意利用全等三角形的性质进行分析,求出的长度即可.【详解】解:∵,∴∵,,∴.故选:C.【点睛】本题考查全等三角形的性质,熟练掌握并利用全等三角形的性质进行等量代换是解题的关键.12、A【分析】利润率不低于12.5%,即利润要大于或等于80×12.5%元,设商品打x折,根据打折之后利润率不低于12.5%,列不等式求解.【详解】解:设商品打x折,由题意得,100×0.1x−80≥80×12.5%,解得:x≥9,即商品最多打9折.故选:A.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义是解题的关键.二、填空题(每题4分,共24分)13、(1,0)【分析】本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.【详解】解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE=D′E,此时△BDE的周长最小,∵D为CO的中点,∴CD=OD=2,∵D和D′关于x轴对称,∴D′(0,﹣2),由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,把B(3,4),D′(0,﹣2)代入解析式,得:,解得,,∴直线BD'的解析式为y=2x﹣2,当y=0时,x=1,故E点坐标为(1,0).故答案为:(1,0).【点睛】本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.14、120°【分析】先求出∠ABC+∠ACB,根据角平分线求出∠PBC、∠PCB的度数和,再根据三角形内角和求出∠BPC.【详解】∵,∴∠ABC+∠ACB=120,∵平分,平分,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=60,∴∠BPC=180-(∠PBC+∠PCB)=120°,故答案为:120°.【点睛】此题考查三角形的内角和定理,角平分线的性质,题中利用角平分线求出∠PBC、∠PCB的度数和是解题的关键.15、1.【分析】易证∠CAD=∠CBF,即可求证△ACD≌△BED,可得DE=CD,即可求得AE的长,即可解题.【详解】解:∵BF⊥AC于F,AD⊥BC于D,
∴∠CAD+∠C=90°,∠CBF+∠C=90°,
∴∠CAD=∠CBF,
∵在△ACD和△BED中,∴△ACD≌△BED,(ASA)
∴DE=CD,
∴AE=AD-DE=BD-CD=BC-CD-CD=1;
故答案为1.【点睛】本题考查了全等三角形的判定和性质,本题中求证△ACD≌△BED是解题的关键.16、1【分析】作EG⊥AC,利用HL证明Rt△BEH≌Rt△CEG,可得CG=BH,再根据角平分线定理可得AG=AH,由此可以算出AC.【详解】过点E作EG⊥AC交AC于点G,∵AE平分∠FAC,∴AG=AH=3,EG=EH,∵DE是BC的垂直平分线,∴EC=EB,在Rt△BEH和Rt△CEG中∴Rt△BEH≌Rt△CEG(HL),∴CG=BH=AB+AH=18,∴AC=AG+GC=18+3=1.故答案为:1.【点睛】本题考查三角形全等的判定和性质、角平分线的性质、垂直平分线的性质,关键在于合理利用辅助线找到关键的对应边.17、【分析】根据二次根式乘法法则以及零指数幂的意义先算乘法,然后把积进行相减即可.【详解】解:原式=-41=-=故答案.【点睛】本题考查了二次根式乘法法则和零指数幂的意义.二次根式乘法法则:两个算数平方根的积,等于它们被开方数的积的算术平方根.零指数幂的意义:任何一个不等于0的数的零次幂都等于1.18、1【分析】如图,利用三角形的外角,可知∠3=∠2+∠4,由平行知∠1=∠4,则∠3=∠2+∠1即可.【详解】如图,,∵∥b,∴∠1=∠4,又∵∠3=∠2+∠4,∴∠3=∠2+∠1=30゜+42゜=1゜.故答案为:1.【点睛】本题考查角的度数问题,关键是把∠3转化为∠1与∠2有关的式子表示.三、解答题(共78分)19、(1)A型芯片的单价为2元/条,B型芯片的单价为35元/条;(2)1.【解析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【详解】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=2.答:A型芯片的单价为2元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:2a+35(200﹣a)=621,解得:a=1.答:购买了1条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.20、(1)详见解析;(2)详见解析;(3)【解析】(1)根据图形平移的性质画出△A1B1C1;(2)连接AA1,再作AA1的垂直平分线,即为所求对称轴l,再根据两点关于直线对称的性质得到B2,C2,依次连接即可;(3)作点C关于x轴对称的点,连接交x轴于一点即为点P,写出点P的坐标即可.【详解】如图,即为所求;如图,和直线即为所求.(3)作点C关于x轴对称的点,连接交x轴于一点即为点P,如图所示:点C的坐标为(-4,-1)关于x轴对称的点(-4,1),设直线AC’的函数的解析式y=kx+b,且点A(-1,-2),在直线A上,解得,所以直线AC’的函数的解析式为,设y=0,则x=-3,即点P的坐标为(0,-3).【点睛】考查作图-轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.21、见详解【分析】作∠AOB的角平分线与线段MN的垂直平分线的交点即所求仓库的位置.【详解】解:如图所示:点P,P′即为所求.【点睛】此题主要考查了应用设计与作图,用到的知识点为:与一条线段两个端点距离相等的点,则这条线段的垂直平分线上;到一个角两边距离相等的点,在这个角的平分线上.22、(1)A′(0,4)、B′(-1,1)、C′(3,1);(2)6;(3)P(0,1)或(0,-5).【分析】(1)观察图形可得△ABC的各顶点坐标,继而根据上加下减,左减右加即可得到平移后对应点A′、B′、C′的坐标;即可得到△A′B′C′;(2)直接利用三角形面积公式根据BC以及BC边上的高进行求解即可;(3)由△BCP与△ABC的面积相等可知点P到BC的距离等于点A到BC的距离,据此分情况求解即可.【详解】(1)观察图形可得A(-2,1),B(-3,-2),C(1,-2),因为把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′,所以A′(-2+2,1+3)、B′(-3+2,-2+3)、C′(1+2,-2+3),即A′(0,4)、B′(-1,1)、C′(3,1);(2)S△ABC===6;(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=-3,解得y1=1,y2=-5,∴P(0,1)或(0,-5).【点睛】本题考查了图形的平移,三角形的面积,熟练掌握平移的规律“上加下减,左减右加”是解题的关键.23、(1)k=5;(2).【解析】试题分析:(1)根据待定系数法将点P(1,m)代入函数中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 25042-2024膜结构用玻璃纤维膜材料
- 2024年度区块链技术应用与合作协议2篇
- 除法二年级教学课件教学
- 基于二零二四年度的智能家居产品销售合同3篇
- 533古典概型课件高一上学期数学人教B版
- 历史遗址保护区历史文化研究合同2024年
- 二零二四年度版权质押合同:金融机构与版权持有者之间的版权质押协议2篇
- 销售员离职后协议书
- 农村民房买卖合同范本
- 幼儿教学教学课件
- 2022年三临床路径及单病种档案盒
- 大洋环流重点
- 国际航班保障流程
- 英文版肺功能检查课件(PPT 50页)
- 《有机合成》说播课课件(全国高中化学优质课大赛获奖案例)
- 高中地理经纬网PPT通用课件
- 城市景观生态
- 五年级英语上册第六单元(新版pep)完美版(课堂PPT)
- 2022年修理厂改革实施方案范文
- 败血症PPT优质课件
- 铁路建设项目工程质量管理办法
评论
0/150
提交评论