2025届重庆市兼善教育集团数学八年级第一学期期末检测模拟试题含解析_第1页
2025届重庆市兼善教育集团数学八年级第一学期期末检测模拟试题含解析_第2页
2025届重庆市兼善教育集团数学八年级第一学期期末检测模拟试题含解析_第3页
2025届重庆市兼善教育集团数学八年级第一学期期末检测模拟试题含解析_第4页
2025届重庆市兼善教育集团数学八年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市兼善教育集团数学八年级第一学期期末检测模拟试题试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列交通标志图案是轴对称图形的是()A. B. C. D.2.如果正多边形的一个内角是140°,则这个多边形是()A.正十边形 B.正九边形 C.正八边形 D.正七边形3.下列函数中,自变量x的取值范围是x≥3的是()A. B. C. D.4.已知点P−1−2a,5关于x轴的对称点和点Q3,b关于y轴的对称点相同,则点Aa,bA.1,−5 B.1,5 C.−1,5 D.−1,−55.在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D6.下列说法:①无理数都是无限小数;②的算术平方根是3;③数轴上的点与实数一一对应;④平方根与立方根等于它本身的数是0和1;⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3).其中正确的个数是()A.1个 B.2个 C.3个 D.4个7.已知点,都在一次函数的图像上,则的大小关系是()A. B. C. D.不能确定8.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.9.根据如图数字之间的规律,问号处应填()A.61 B.52 C.43 D.3710.如果把分式中的x和y的值都变为原来的2倍,那么分式的值()A.变为原来的2倍 B.变为原来的4倍C.缩小为原来的 D.不变11.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=312.如图,在中,点是边上任一点,点分别是的中点,连结,若的面积为,则的面积为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为_____.14.已知a,b满足方程组,则a—2b的值为__________.15.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h时,他们之间的距离为______km.16.如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为.17.若等腰三角形的两边长为10,6,则周长为______.18.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=________.三、解答题(共78分)19.(8分)先化简,再求值:,其中.20.(8分)在中,点是边上的中点,过点作与线段相交的直线,过点作于,过点作于.(1)如图,如果直线过点,求证:;(2)如图,若直线不经过点,联结,,那么第问的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.21.(8分)已知:如图,∠1=∠2,∠3=∠4求证:AC=AB.22.(10分)(1)先化简,再求值:,其中(2)解分式方程:23.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A,x轴上有一点P(a,0).(1)求点A的坐标;(2)若△OAP为等腰三角形,则a=;(3)过点P作x轴的垂线(垂线位于点A的右侧)、分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.24.(10分)先化简,再求值:,其中x=-3.25.(12分)求下列各式中的x:(1)(x﹣1)2=25(2)x3+4=26.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?

参考答案一、选择题(每题4分,共48分)1、B【详解】A图形中三角形和三角形内部图案的对称轴不一致,所以不是轴对称图形;B为轴对称图形,对称轴为过长方形两宽中点的直线;C外圈的正方形是轴对称图形,但是内部图案不是轴对称图形,所以也不是;D图形中圆内的两个箭头不是轴对称图象,而是中心对称图形,所以也不是轴对称图形.故选B.2、B【解析】360°÷(180°-140°)

=360°÷40°

=1.

故选B.3、D【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.4、B【解析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y)∴P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b),因而就得到关于a,b的方程,从而得到a,b的值.则A(a,b)关于x轴对称的点的坐标就可以得到.【详解】∵P(-1-2a,5)关于x轴的对称点的坐标是(-1-2a,-5),Q(3,b)关于y轴的对称点的坐标是(-3,b);∴-1-2a=-3,b=-5;∴a=1,∴点A的坐标是(1,-5);∴A关于x轴对称的点的坐标为(1,5).故选B.【点睛】本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.5、C【解析】试题解析:A.加上AB=DE,不能证明这两个三角形全等,故此选项错误;B.加上BC=EF,不能证明这两个三角形全等,故此选项错误;C.加上AB=FE,可用证明两个三角形全等,故此选项正确;D.加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选C.6、C【分析】根据无理数的定义判断①;根据算术平方根的定义判断②;根据实数与数轴的关系判断③;根据平方根与立方根的定义判断④;根据关于x轴对称的点的坐标特点判断⑤.【详解】①无理数都是无限小数,正确;

②的算术平方根是,错误;

③数轴上的点与实数一一对应,正确;

④平方根与立方根等于它本身的数是0,错误;

⑤若点A(-2,3)与点B关于x轴对称,则点B的坐标是(-2,-3),正确.

故选:C.【点睛】此题考查无理数的定义,算术平方根的定义,实数与数轴的关系,平方根与立方根的定义,关于x轴对称的点的坐标特点,解题关键在于需熟练掌握各性质定义.7、A【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【详解】∵一次函数中,k=-3<0,∴y随x的增大而减小,∵<4,∴y1>y1.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8、B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.9、A【分析】由图可知每个圆中的规律为左边与上边对应的数相乘得到的积再加上右边的数,所得结果为最下边的数.【详解】∵由图可知每个圆中的规律为:1×2+2=4,2×3+3=9,3×5+4=19,4×7+5=33,∴最后一个圆中5×11+6=1,∴?号所对应的数是1.故选:A.【点睛】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.10、A【分析】将原分式中的和分别用代替求出结果,再与原分式比较即可得出答案.【详解】解:将原分式中的和分别用代替,得:新分式=故新分式的值变为原来的2倍.故选:A.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或整式,分式的值不变.11、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.12、C【分析】根据三角形中线及中位线的性质即可得到三角形面积之间的关系,进而由的面积即可得到的面积.【详解】∵G,E分别是FB,FC中点∴,∴∵∴∵F是AD中点∴,∵,∴∴,故选:C.【点睛】本题主要考查了三角形面积与中位线和中线的关系,熟练掌握相关性质定理是解决本题的关键.二、填空题(每题4分,共24分)13、1.【详解】解:如图,连接AA′、BB′.∵点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是2.又∵点A的对应点在直线y=x上一点,∴2=x,解得x=1,∴点A′的坐标是(1,2),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故答案为1.【点睛】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣平移.根据平移的性质得到BB′=AA′是解题的关键.14、【分析】先根据二元一次方程组解出,b的值,再代入求解即可.【详解】解得将代入a—2b中故答案为:.【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.15、1.5【详解】因为甲过点(0,0),(2,4),所以S甲=2t.因为乙过点(2,4),(0,3),所以S乙=t+3,当t=3时,S甲-S乙=6-=16、.【分析】过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.通过证明△ABM≌△ACE(SAS)推知全等三角形的对应边AM=AE、对应角∠BAM=∠CAE;然后由等腰直角三角形的性质和∠MAN=45°得到∠MAN=∠EAN=45°,所以△MAN≌△EAN(SAS),故全等三角形的对应边MN=EN;最后由勾股定理得到EN2=EC2+NC2即MN2=BM2+NC2.【详解】解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=2,CN=3,∴MN2=22+32,∴MN=考点:2.正方形的性质;2.全等三角形的判定与性质.17、26或1【分析】题目给出等腰三角形有两条边长为10和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若10为腰长,6为底边长,符合三角形的两边之和大于第三边,∴周长=10+10+6=26;(2)若6为腰长,10为底边长,符合三角形的两边之和大于第三边,∴周长=6+6+10=1.故答案为:26或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.18、11【分析】根据全等三角形的性质求出x和y即可.【详解】解:∵这两个三角形全等∴x=6,y=5∴x+y=11故答案为11.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.三、解答题(共78分)19、;2【分析】先约分化简,再计算括号,最后代入化简即可.【详解】解:原式===将x=3代入,原式=2.【点睛】本题考查分式的混合运算、乘法公式等知识,解题的关键是灵活掌握分式的混合运算法则,注意简便运算,属于中考常考题型.20、(1)详见解析;(2)成立,理由详见解析【分析】(1)由“AAS”可证△BQN≌△CQM,可得QM=QN;(2)延长NQ交CM于E,由“ASA”可证△BQN≌△CQE,可得QE=QN,由直角三角形的性质可得结论.【详解】(1)点是边上的中点,,,,,且,,,;(2)仍然成立,理由如下:如图,延长交于,点是边上的中点,,,,,,且,,,,且,.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.21、见解析【解析】试题分析:根据邻补角的定义证得∠ADB=∠ADC,再利用ASA证明△ABD△ACD,根据全等三角形的性质即可得结论.试题解析:证明:∵∠3=∠4,

∴∠ADB=∠ADC(等角的补角相等),

在△ABD与△ACD中,,∴△ABD△ACD(ASA),

∴AC=AB.22、(1),8;(2)原方程无解【分析】(1)现根据分式的运算法则化简分式,再将a的值代入即可;(2)先变形,再把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)原式=====,当a=4时,原式=;(2)解:解:原方程化为:方程两边都乘以(y+2)(y-2)得:化简得,2y=4,解得:y=2,

经检验:y=2不是原方程的解.原方程无解.【点睛】本题考查了分式的化简求值以及解分式方程,分式的化简求值注意运用运算法则先化简再代入计算;解分式方程的关键能把分式方程转化成整式方程并注意要检验.23、(1)A(4,3);(2)±5或8或;(3)1【分析】(1)点A是两直线的交点,其坐标即方程组的解;(2)分OA=PO、OA=AP、AP=OP适中情况,分别求解即可;(3)P(a,0),则分别用含a的式子表示出B、C的坐标,从而表示出BC的长度,用勾股定理求得OA,然后根据BC=OA求出a的值,从而利用三角形面积公式求解.【详解】解:(1)由题意:解得:,故点A(4,3);(2)点A(4,3),则OA=,①当OA=PO=P1O时,此时OA=5=PO=P1O,即a=±5②当OA=AP时,如图,过点A做AM⊥x轴于点M此时OM=MP=4∴OP=8则点P(8,0),即a=8;③当AP=OP时,如图所示,连接AP,过点A作AH⊥x轴于点H,AP=PO=a,则PH=4﹣a,则(4﹣a)2+9=a2,解得:a=;综上,a=±5或8或;故答案为:±5或8或;(3)∵P(a,0),则点B、C的坐标分别为:(a,a)、(a,﹣a+7),∴BC=a-(-a+7)=a+a﹣7=又∵BC=O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论