版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古扎兰屯市民族中学2025届数学八上期末考试试题题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10-6米 B.3.4×10-6米 C.34×10-5米 D.3.4×10-5米2.将多项式分解因式,结果正确的是()A. B.C. D.3.小马虎在下面的计算中只做对了一道题,他做对的题目是()A. B. C. D.4.如图所示,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是()A.SSS B.SAS C.AAS D.ASA5.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是()A.32° B.64° C.65° D.70°6.下列方程中,不论m取何值,一定有实数根的是()A. B.C. D.7.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图所示的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分)()A. B. C. D.8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,若CE=1,AB=4,则下列结论一定正确的个数是()①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE与△BDF的周长相等;A.1个 B.2个 C.3个 D.4个9.如图,一根竹竿AB,斜靠在竖直的墙上,P是AB中点,A′B′表示竹竿AB端沿墙上、下滑动过程中的某个位置,则在竹竿AB滑动过程中OP()A.下滑时,OP增大 B.上升时,OP减小C.无论怎样滑动,OP不变 D.只要滑动,OP就变化10.已知点A(−1,m)和B(3,n)是一次函数y=-2x+1图象上的两点,则()A.m=n B.m>n C.m<n D.不确定二、填空题(每小题3分,共24分)11.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.12.函数的自变量的取值范围是___________13.当x=__________时,分式的值为零.14.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.15.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=____.16.已知a+=,则a-=__________17.计算的结果是______.18.如图,在梯形ABCD中,AD∥BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为_____.三、解答题(共66分)19.(10分)某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?20.(6分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长21.(6分)(1)计算:(2x﹣3)(﹣2x﹣3)(2)计算:102222.(8分)春节即将来临,根据习俗好多家庭都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进批红灯笼和对联进行销售,已知红灯笼的进价是对联进价的2.25倍,用720元购进对联的数量比用540元购进红灯笼的数量多60件(1)对联和红灯笼的进价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼.已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个.销售一段时间后发现对联售出了总数的,红灯笼售出了总数的.为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?23.(8分)甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题(1)甲登山的速度是每分钟米;乙在A地提速时,甲距地面的高度为米;(2)若乙提速后,乙的速度是甲登山速度的3倍;①求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;②乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;(3)当x为多少时,甲、乙两人距地面的高度差为80米?24.(8分)先化简,再求值:(1﹣)÷,从﹣1,2,3中选择一个适当的数作为x值代入.25.(10分)先化简,再求值:(1),其中,;(2),再从1,2,3中选取一个适当的数代入求值.26.(10分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题解析:0.0000034米米.故选B.2、D【解析】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.3、D【分析】根据分式的运算法则逐一计算即可得答案.【详解】A.,故该选项计算错误,不符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算正确,符合题意,故选:D.【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.4、D【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:D.【点睛】本题考查了全等三角形的判定,掌握三角形全等的判定是解题的关键.5、B【解析】此题涉及的知识点是三角形的翻折问题,根据翻折后的图形相等关系,利用三角形全等的性质得到角的关系,然后利用等量代换思想就可以得到答案【详解】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置∠B=∠D=32°∠BEH=∠DEH∠1=180-∠BEH-∠DEH=180-2∠DEH∠2=180-∠D-∠DEH-∠EHF=180-∠B-∠DEH-(∠B+∠BEH)=180-∠B-∠DEH-(∠B+∠DEH)=180-32°-∠DEH-32°-∠DEH=180-64°-2∠DEH∠1-∠2=180-2∠DEH-(180-64°-2∠DEH)=180-2∠DEH-180+64°+2∠DEH=64°故选B【点睛】此题重点考察学生对图形翻折问题的实际应用能力,等量代换是解本题的关键6、B【分析】分别计算△,再根据△与0的关系来确定方程有无实数根.【详解】解:A,,,当时,方程无实数根,故选项错误;B,,,不论m取何值,方程一定有实数根,故选项正确;C,,,当时,方程无实数根,故选项错误;D,,,当时,方程无实数根,故选项错误;故选:B.【点睛】此题考查根的判别式,解题的关键是注意分三种情况进行讨论.7、D【分析】可看成镜面对称,根据镜面对称的规律:镜子中看到的文字与实际文字是关于镜面成垂直的线对称,即可判断.【详解】解:易得“望”字应在左边,“希”字应在右边,字以外的部分为镂空部分,故选D.【点睛】此题考查的是镜面对称,掌握镜面对称的规律是解决此题的关键.8、D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AB=4可得AC=BC=4,则AE=3=DE,由勾股定理可得CD=2,①正确;BD=4-2,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)=135°-∠CDF=135°-(∠DFB+45°)=90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正确;△DCE的周长=CD+CE+DE=2+4,△BDF的周长=BD+BF+DF=BD+AB=4+4-2=4+2,④正确;故正确的选项有4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.9、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OP=AB.【详解】解:∵AO⊥BO,点P是AB的中点,
∴OP=AB,
∴在滑动的过程中OP的长度不变.
故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.10、B【分析】根据一次函数表达式得到k的符号,再根据一次函数的增减性即可得出结论.【详解】解:∵A,B两点在一次函数y=-2x+1的图像上,-2<0,∴一次函数y=-2x+1中y随x的增大而减小,∵A(−1,m),B(3,n),-1<3,∴点A在图像上位于点B左侧,∴m>n,故选B.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性的判定是解决问题的关键.二、填空题(每小题3分,共24分)11、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.12、【分析】根据二次根式的性质和分母的意义,被开方数大于或等于0,分母不等于0,可以求出x的取值范围.【详解】由题意得解得故答案为:.【点睛】本题考查了二次根式的性质和分母的意义,掌握被开方数大于或等于0,分母不等于0是解题的关键.13、-1【分析】根据分式的解为0的条件,即可得到答案.【详解】解:∵分式的值为零,∴,解得:,∴;故答案为:.【点睛】本题主要考查分式的值为0的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.14、1【分析】根据折叠的性质可得∠EDA=90°,ED=EC=6cm,再根据直角三角形30°角所对边是斜边的一半可得AE,从而可得AC.【详解】解:根据折叠的性质DE=EC=6cm,∠EDB=∠C=90°,∴∠EDA=90°,∵∠A=30°,∴AE=2DE=12cm,∴AC=AE+EC=1cm,故答案为:1.【点睛】本题考查折叠的性质,含30°角的直角三角形.理解直角三角形斜边上的中线等于斜边的一半.15、67°【解析】根据全等三角形的性质,两三角形全等,对应角相等,因为角与67°的角是对应角,因此,故答案为67°.16、【解析】通过完全平方公式即可解答.【详解】解:已知a+=,则==10,则==6,故a-=.【点睛】本题考查完全平方公式的运用,熟悉掌握是解题关键.17、0【分析】先计算绝对值、算术平方根,再计算减法即可得.【详解】解:原式==0,【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质.18、1【分析】首先过点A作AE∥CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD是平行四边形,△ABE是等边三角形,继而求得答案.【详解】解:过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∠B=180°﹣∠BAD=180°﹣120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=1.故答案为:1.【点睛】考核知识点:平行四边形性质.作辅助线是关键.三、解答题(共66分)19、(1)A型芯片的单价为2元/条,B型芯片的单价为35元/条;(2)1.【解析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【详解】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=2.答:A型芯片的单价为2元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:2a+35(200﹣a)=621,解得:a=1.答:购买了1条A型芯片.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.20、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,
∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF1⊥BD,
∵∠ABC=20°,F1D∥BE,
∴∠F1F1D=∠ABC=20°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,
∴∠F1DF1=∠ABC=20°,
∴△DF1F1是等边三角形,
∴DF1=DF1,过点D作DG⊥BC于G,
∵BD=CD,∠ABC=20°,点D是角平分线上一点,
∴∠DBC=∠DCB=×20°=30°,BG=BC=,
∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF1=320°-150°-20°=150°,
∴∠CDF1=∠CDF1,
∵在△CDF1和△CDF1中,,
∴△CDF1≌△CDF1(SAS),
∴点F1也是所求的点,
∵∠ABC=20°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×20°=30°,
又∵BD=3,
∴BE=×3÷cos30°=3,
∴BF1=3,BF1=BF1+F1F1=3+3=2,
故BF的长为3或2.21、(1)9﹣4x2;(2)1【分析】(1)根据平方差公式计算即可;(2)根据完全平方公式计算即可.【详解】解:(1)(2x﹣3)(﹣2x﹣3)=(-3)2﹣(2x)2=9﹣4x2;(2)1022=(100+2)2=1002+2×100×2+22=10000+400+4=1.【点睛】本题主要考查了平方差公式和完全平方公式,熟记公式是解答本题的关键.22、(1)对联的进价为8元/件,红灯笼的进价为18元/件;(2)商店最低打5折,才能使总的利润率不低于20%.【分析】(1)设对联的进价为x元,则红灯笼的进价为2.25x元,根据数量=总价÷单价结合用720元购进对联的数量比用540元购进红灯笼的数量多60件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设商店对剩下的商品打y折销售,根据利润=销售总额﹣进货成本结合总的利润率不低于20%,即可得出关于y的一元一次不等式,解之即可得出结论.【详解】解:(1)设对联的进价为x元,则红灯笼的进价为2.25x元,依题意,得:,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴2.25x=18,答:对联的进价为8元/件,红灯笼的进价为18元/件;(2)设商店对剩下的商品打y折销售,依题意得:12×300×+24×200×+12××300×(1﹣)+24××200×(1﹣)﹣8×300﹣18×200≥(8×300+18×200)×20%,整理得:240y≥1200,解得:y≥5,答:商店最低打5折,才能使总的利润率不低于20%.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1)10,1;(2)①,②能够实现.理由见解析;(3)当x为2.5或10.5或3时,甲、乙两人距地面的高度差为80米.【分析】(1)由时间,速度,路程的基本关系式可解;(2)①分段代入相关点的坐标,利用待定系数法来求解即可;②分别计算甲乙距离地面的高度再比较即可;(3)求出甲的函数解析式,分0≤x≤2时,2<x≤11时,11<x≤20时来讨论即可求解.【详解】(1)甲登山的速度为:(300﹣2)÷20=10米/分,2+10×2=1米,故答案为10,1.(2)①V乙=3V甲=30米/分,t=2+(300﹣30)÷30=11(分钟),设2到11分钟,乙的函数解析式为y=kx+b,∵直线经过A(2,30),(11,300),∴解得∴当2<x≤11时,y=30x﹣30设当0≤x≤2时,乙的函数关系式为y=ax,∵直线经过A(2,30)∴30=2a解得a=15,∴当0≤x≤2时,y=15x,综上,②能够实现.理由如下:提速5分钟后,乙距地面高度为30×7﹣30=180米.此时,甲距地面高度为7×10+2=170米.180米>170米,所以此时,乙已经超过甲.(3)设甲的函数解析式为:y=mx+2,将(20,300)代入得:300=20m+2∴m=10,∴y=10x+2.∴当0≤x≤2时,由(10x+2)﹣15x=80,解得x=4>2矛盾,故此时没有符合题意的解;当2<x≤11时,由|(10x+2)﹣(30x﹣30)|=80得|130﹣20x|=80∴x=2.5或x=10.5;当11<x≤20时,由300﹣(10x+2)=80得x=3∴x=2.5或10.5或3.∴当x为2.5或10.5或3时,甲、乙两人距地面的高度差为80米.【点睛】本题是一道一次函数的综合试题,考查了行程问题中路程=速度×时间的关系变化的运用,待定系数法求一次函数的解析式的运用,图象的交点坐标的求法.在解答中注意线段的解析式要确定自变量的取值范围.24、原式=【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【详解】解:原式==当x=1时,原式==1.考点:分式的化简求值.25、(1)原式=,值为-1;(2)原式=,值为-1.【分析】(1)括号内先通分进行分式加减运算,然后在与括号外的分式进行除法运算,化简后把数值代入即可求解;(2)括号内先通分进行分式加减运算,然后在与括号外的分式进行除法运算,化简后根据使分式有意义的原则在所给的数中,选择一个合适的数值代入即可求解.【详解】(1)原式=,当,时,原式=,故原式=,值为-1;(2)原式=,若使原式有意义,则,,即所以x应取3,即当时,原式=故原式=,值为-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 耕地承包责任合同
- 胃癌的营养支持治疗
- 白酒行业洞察报告
- 《现浇钢筋混》课件
- 第22课《伟大的悲剧》公开课一等奖创新教学设计 统编版语文七年级下册
- 1小蝌蚪找妈妈 公开课一等奖创新教学设计
- 胸椎内固定手术
- 2023年石英玻璃管(棒)投资申请报告
- 如何选择医疗险
- 犬似丝线虫病
- 股骨骨折护理疑难病例讨论
- 生理学课件:第十章 感觉器官
- 《配送中心运营管理实务》 教案 第15课 送货作业管理
- ISO软件开发全套文档质量手册
- 期末复习三角形市公开课一等奖省优质课赛课一等奖课件
- 中国特色社会主义理论体系的形成发展PPT2023版毛泽东思想和中国特色社会主义理论体系概论课件
- 钨极氩弧焊焊接工艺参数课件
- 建筑行业职业病危害
- 保护身体小秘密课件
- 安全教育水果蔬菜要洗净
- 2024年高中语文会考试题及答案
评论
0/150
提交评论