版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市铁西区2025届初三最后一次模拟(I卷)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在实数0,-π,,-4中,最小的数是()A.0 B.-π C. D.-42.据统计,2015年广州地铁日均客运量均为人次,将用科学记数法表示为()A. B. C. D.3.函数y=1-xA.x>1 B.x<1 C.x≤1 D.x≥14.已知方程组,那么x+y的值()A.-1 B.1 C.0 D.55.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A. B. C.6π D.以上答案都不对6.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法:①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形.其中,正确的有()个A.1 B.2 C.3 D.47.地球上的陆地面积约为149000000千米2,用科学记数法表示为()A.149×106千米2B.14.9×107千米2C.1.49×108千米2D.0.149×109千28.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.109.下列四个几何体,正视图与其它三个不同的几何体是()A. B.C. D.10.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a2•a4=a611.第24届冬奥会将于2022年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是()A. B. C. D.12.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg二、填空题:(本大题共6个小题,每小题4分,共24分.)13.比较大小:_______3(填“”或“”或“”)14.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.15.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.16.已知二次函数中,函数y与x的部分对应值如下:...-10123......105212...则当时,x的取值范围是_________.17.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.18.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD≌△COB,你补充的条件是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.20.(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.21.(6分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.22.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.23.(8分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图).已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30°,在地面的点F处,测得标语牌点A的仰角为75°,且点E,F,B,C在同一直线上,求点E与点F之间的距离.(计算结果精确到0.1m,参考数据:≈1.41,≈1.73)24.(10分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。25.(10分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.26.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.27.(12分)(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.求的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-1的大小,∵|-π|<|-1|,∴最小的数是-1.故选D.此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.2、D【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】解:6
590
000=6.59×1.故选:D.本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.3、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.试题解析:根据题意得:1-x≥0,解得:x≤1.故选C.考点:函数自变量的取值范围.4、D【解析】
解:,①+②得:3(x+y)=15,则x+y=5,故选D5、D【解析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=π.
故选D.本题的关键是理解出,线段AB扫过的图形面积为一个环形.6、D【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.7、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解:149
000
000=1.49×2千米1.故选C.把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.8、B【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=6.故选:B.本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.9、C【解析】
根据几何体的三视图画法先画出物体的正视图再解答.【详解】解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C.此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.10、D【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.【详解】A、(a2)5=a10,故原题计算错误;B、(x﹣1)2=x2﹣2x+1,故原题计算错误;C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;D、a2•a4=a6,故原题计算正确;故选:D.此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.11、B【解析】
先找出滑雪项目图案的张数,结合5张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有5张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B.本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.12、D【解析】试题分析:科学计数法是指:a×,且,n为原数的整数位数减一.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、>.【解析】
先利用估值的方法先得到≈3.4,再进行比较即可.【详解】解:∵≈3.4,3.4>3.∴>3.故答案为:>.本题考查了实数的比较大小,对进行合理估值是解题的关键.14、50【解析】试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.试题解析:连结EF,如图,∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考点:圆内接四边形的性质.15、【解析】
由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.【详解】∵DE∥BC,∴∠F=∠FBC,∵BF平分∠ABC,∴∠DBF=∠FBC,∴∠F=∠DBF,∴DB=DF,∵DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=,∵DF=DB=2,∴EF=DF-DE=2-=,故答案为.此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.16、0<x<4【解析】
根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.【详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为0<x<4.此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.17、75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.18、∠A=∠C或∠ADC=∠ABC【解析】
本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可.【详解】添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】
(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,
则四边形AECD是矩形,
∴CE=AD=1,AE=CD=3,
∵AB=BC,
∴BE=AB-1,
在Rt△ABE中,∵AB2=AE2+BE2,
∴AB2=32+(AB-1)2,
解得:AB=5;
(2)过P作PF⊥BQ于F,
∴BF=BQ=,
∴△PBF∽△ABE,
∴,
∴,
∴PB=,
∴PA=AB-PB=,
过P作PG⊥CD于G交AE于M,
∴GM=AD=1,∵DC⊥BC∴PG∥BC
∴△APM∽△ABE,
∴,
∴,
∴PM=,
∴PG=PM+MG==PB,
∴圆P与直线DC相切.本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.20、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30-a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台.总费用为万元。∴方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。21、(1).;(2)点坐标为;.(3).【解析】分析:(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:解得,,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方时,直线与关于对称.,,.,,.综上所述,点坐标为;.(3)由题意可得:.,,,即.,,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,,,,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.22、(1)100;(2)作图见解析;(3)1.【解析】试题分析:(1)根据百分比=计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.23、7.3米【解析】
:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【详解】解:如图作FH⊥AE于H.由题意可知∠HAF=∠HFA=45°,∴AH=HF,设AH=HF=x,则EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E与点F之间的距离为7.3米本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.24、见解析【解析】
在ABC和EAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE证得ABC≌EAD,继而证得AC=DE.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.本题主要考查了平行四边形的基本性质和全等三角形的判定及性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.25、(1)90°;(1)AE1+EB1=AC1,证明见解析.【解析】
(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.26、(1);(1),E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).【解析】
(1)设B(x1,5),由已知条件得,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值,最终得到E点坐标.(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P点坐标.又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年体育健身俱乐部用户服务合同模板3篇
- 消抖课程设计
- 2024年度企事业单位聘用司机及车辆保养维护服务合同3篇
- 春天课程设计
- 2024年导游带团应急处理合同范本3篇
- 硬件课程设计实验箱
- 2024年地暖安装工程设计与施工一体化合同9篇
- 滚筒项目课程设计
- 2024年房屋买卖合同贷款服务协议范本3篇
- 物业内训师课程设计
- 《录音技术与艺术》课程教学大纲
- 气相色谱法分析(甲醇)原始记录
- 部编版七年级语文上下册教材解读分析精编ppt
- DB63∕T 2013-2022 公路养护工程预算定额
- InternationalSettlementsLecture3InternationalClearingSystems
- 小学一年级班会课教案汇编 全册
- 汽车理论作业Matlab程序轻型货车动力性能评价
- 长沙理工大学工程经济课程设计(共86页)
- 2017版和2002版医疗器械分类目录对比
- 阀门的压力试验规范
- 郑家坡铁矿充填系统设计
评论
0/150
提交评论