




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市东台市第四联盟重点中学2024-2025学年中考全国统考预测密卷数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1042.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)3.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①② B.②④ C.②③ D.③④4.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.25.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图36.如图,在中,,,,点分别在上,于,则的面积为()A. B. C. D.7.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣38.已知a,b为两个连续的整数,且a<<b,则a+b的值为()A.7 B.8 C.9 D.109.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()
A. B. C. D.10.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.12二、填空题(共7小题,每小题3分,满分21分)11.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D(3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.12.已知方程的一个根为1,则的值为__________.13.在函数y=x-1的表达式中,自变量x的取值范围是.14.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;15.不等式组有2个整数解,则m的取值范围是_____.16.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数(x<0)的图象上,则k=.17.竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第____秒时离地面最高.三、解答题(共7小题,满分69分)18.(10分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.19.(5分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?20.(8分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.(1)求线段的长(用含的代数式表示);(2)求时,求与之间的函数解析式,并写出的取值范围;(3)当时,直接写出的取值范围.21.(10分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.(1)若,DC=4,求AB的长;(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.22.(10分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.23.(12分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出,;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?24.(14分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,
故选:D.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2、C【解析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.3、D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.4、C【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.5、C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.6、C【解析】
先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如图2,过点P作PE⊥BC于E,
在Rt△BPE中,PE=BP•sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故选C.本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.7、A【解析】
方程变形后,配方得到结果,即可做出判断.【详解】方程,变形得:,配方得:,即故选A.本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.8、A【解析】∵9<11<16,∴,即,∵a,b为两个连续的整数,且,∴a=3,b=4,∴a+b=7,故选A.9、C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.10、B【解析】分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线,∴DE=CD=2,∴△ABD的面积故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.二、填空题(共7小题,每小题3分,满分21分)11、或【解析】
分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.【详解】当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:点的坐标为,B点的坐标为,点的坐标为;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:点的坐标为,B点的坐标为,点的坐标为.综上所述:这个旋转中心的坐标为或.故答案为或.本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.12、1【解析】
欲求m,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m值.【详解】设方程的另一根为x1,又∵x=1,∴,解得m=1.故答案为1.本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x2-9x+m=0中求出m的值.13、x≥1.【解析】
根据被开方数大于等于0列式计算即可得解.【详解】根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.14、>【解析】
根据反比例函数的性质求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而a<b<0,所以y1>y2故答案为:>本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.15、1<m≤2【解析】
首先根据不等式恰好有个整数解求出不等式组的解集为,再确定.【详解】不等式组有个整数解,其整数解有、这个,.故答案为:.此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.16、-4.【解析】
过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.17、.【解析】
首先根据题意得出m的值,进而求出t=﹣的值即可求得答案.【详解】∵竖直上抛的小球离地面的高度h(米)与时间t(秒)的函数关系式为h=﹣2t2+mt+,小球经过秒落地,∴t=时,h=0,则0=﹣2×()2+m+,解得:m=,当t=﹣=﹣时,h最大,故答案为:.本题考查了二次函数的应用,正确得出m的值是解题关键.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.【解析】试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.19、();()此时每天利润为元.【解析】试题分析:(1)根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,∴;()将代入()中函数表达式得:,∴利润(元),答:此时每天利润为元.20、(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.(2)y=;(3)5≤x≤9【解析】
(1)分点P在线段CD或在线段AD上两种情形分别求解即可.
(2)分三种情形:①当5≤x≤1时,如图1中,根据y=S△DPB,求解即可.②当1<x≤9时,如图2中,根据y=S△DPB,求解即可.③9<x≤14时,如图3中,根据y=S△APQ+S△ABQ-S△PAB计算即可.
(3)根据(2)中结论即可判断.【详解】解:(1)当0<x≤1时,PD=1-x,
当1<x≤14时,PD=x-1.
(2)①当5≤x≤1时,如图1中,
∵四边形ABCD是矩形,
∴OD=OB,
∴y=S△DPB=ו(1-x)•6=(1-x)=12-x.
②当1<x≤9时,如图2中,y=S△DPB=×(x-1)×1=2x-2.
③9<x≤14时,如图3中,y=S△APQ+S△ABQ-S△PAB=•(14-x)•(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.
综上所述,y=.
(3)由(2)可知:当5≤x≤9时,y=S△BDP.本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.21、(1);(2)30°【解析】
(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.【详解】解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)连接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切线,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中点,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等边三角形,∴∠EDC=60°,∴∠C=30°.考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.22、(1)45°(2),理由见解析【解析】
(1)由线段的垂直平分线的性质可得PM=PN,PO⊥MN,由等腰三角形的性质可得∠PMN=∠PNM=α,由正方形的性质可得AP=PN,∠APN=90°,可得∠APO=α,由三角形内角和定理可求∠AMN的度数;(2)由等腰直角三角形的性质和正方形的性质可得,,∠MNC=∠ANB=45°,可证△CBN∽△MAN,可得.【详解】解:(1)如图,连接MP,∵直线l是线段MN的垂直平分线,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四边形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 航运代理合同样本
- 郑州租地种树合同范本
- 种植与回收合同范本
- 围墙工厂供货合同范本
- 车辆报废注销合同范本
- 上门采样合同范本
- 出售塔吊电梯合同范本
- 电梯钢构合同范本
- 江苏省无锡市惠山区2024-2025学年八年级上学期1月期末考试数学试卷(含答案)
- 民用口罩合同范本
- 儿童太阳系知识科普课件
- 档案管理实务基础试题及答案
- 上海杨浦区社区工作者考试真题2024
- 广东省云浮市新兴县2023-2024学年八年级下学期语文期中试卷(含答案)
- DeepSeek在法律服务领域的应用前景
- 质控工具在护理管理中的应用
- 2025年粮油保管员职业技能资格知识考试题(附答案)
- DeepSeek人工智能的特点应用挑战与未来发展介绍课件
- 2025-2030年中国气象探测系统市场十三五规划规划与发展建议分析报告
- 皮肤病靶向治疗专家共识(2025版)解读课件
- GB/T 31114-2024冰淇淋质量要求
评论
0/150
提交评论