版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【关注公众号:林樾数学】免费获取更多初高中数学学习资料专题09应用一元二次方程(2个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1:列一元二次方程解应用题的一般步骤知识点2:几种常见的一元二次方程应用题类型(重点)【方法二】实例探索法题型1:列一元二次方程解“传播”问题题型2:列一元二次方程解“利润”问题题型3:列一元二次方程解“图形面积”问题题型4:列一元二次方程解“动点”问题【方法三】仿真实战法考法:一元二次方程的实际应用【方法四】成果评定法【学习目标】1.能根据具体问题的数量关系列出一元二次方程并求解,能根据问题的实际意义检验所得的结果是否合理。2.认识方程模型的重要性,掌握运用方程解决实际问题的一般步骤,提高分析问题、解决问题的能力。【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1:列一元二次方程解应用题的一般步骤
1.审(审题目,分清已知量、未知量、等量关系等);
2.设(设未知数,有时会用未知数表示相关的量);
3.列(根据题目中的等量关系,列出方程);
4.解(解方程,注意分式方程需检验,将所求量表示清晰);5.验(检验方程的解能否保证实际问题有意义)
6.答(写出答案,切忌答非所问).知识点2:几种常见的一元二次方程应用题类型(重点)1:增长率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.
(1)增长率问题:
平均增长率公式为(a为原来数,x为平均增长率,n为增长次数,b为增长后的量.)
(2)降低率问题:
平均降低率公式为(a为原来数,x为平均降低率,n为降低次数,b为降低后的量.)【例1】(2023·湖南湘西·统考三模)在“双减政策”的推动下,我县某中学学生每天书面作业时长明显减少,2022年上学期每天书面作业平均时长为,经过2022年下学期和2023年上学期两次调整后,2023年上学期平均每天书面作业时长为,设该校这两学期平均每天作业时长每期的下降率为,则可列方程为(
)A. B.C. D.【答案】C【分析】利用2023年上学期平均每天作业时长年上学期每天作业平均时长该校平均每天作业时长这两学期每期的下降率,即可得出关于x的一元二次方程,此题得解.【详解】解:根据题意得:,故选:C.【点睛】本题考查了由实际问题抽象出的一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.【变式】(2023·湖南·湖南师大附中校联考模拟预测)今年五一“网红长沙”再次火出“圈”,27个旅游景区五天累计接待游客万人,成为全国十大必到城市之一.长沙美食也吸引了无数游客纷纷打卡,某网红火锅店五一期间生意火爆,第2天营业额达到10万元,第4天营业额为万元,据估计第3天、第4天营业额的增长率相同.(1)求该网红店第3,4天营业额的平均增长率;(2)若第1天的营业额为万元,第五天由于游客人数下降,营业额是前四天总营业额的,求该网红店第5天营业额.【答案】(1)该网红店第3,4天营业额的平均增长率为;(2)该网红店第5天营业额为万元.【详解】(1)解:设该网红店第3,4天营业额的平均增长率为,则解得,(舍)答:该网红店第3,4天营业额的平均增长率为;(2)解:前四天营业额为:万元.第五天营业额:万元,答:该网红店第5天营业额为万元.2.面积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.【例2】(2023·新疆喀什·统考三模)为大力实施城市绿化行动,某小区规划设置一片面积为1000平方米的矩形绿地,并且长比宽多30米,设绿地长为x米,根据题意可列方程为(
)A. B. C. D.【答案】B【分析】设绿地长为x米,则宽为米,根据矩形绿地的面积为1000平方米列出方程即可.【详解】解:设绿地长为x米,则宽为米,根据题意得:,故B正确.故选:B.【点睛】本题主要考查了一元二次方程的应用,解题的关键是熟练掌握矩形的面积公式.【变式】(2022•德州)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.3.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为a,十位上数为b,百位上数为c,则这个三位数可表示为:100c+10b+a.
(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x,则另两个数分别为x-1,x+1.
几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.
如:三个连续偶数(奇数),设中间一个数为x,则另两个数分别为x-2,x+2.【例3】(2022秋·天津武清·九年级校考阶段练习)一个两位数等于它个位数字的平方,且个位数字比十位数字大3,则这个两位数是(
)A.25 B.36 C.25或36 D.64【答案】C【分析】设十位数字为,表示出个位数字,根据题意列出方程求解即可.【详解】设这个两位数的十位数字为,则个位数字为.依题意得:,解得:.∴这个两位数为25或36.故选C.【点睛】本题考查一元二次方程的应用,根据题意列出一元二次方程是解题的关键.【变式】一个两位数是一个一位数的平方,把这个一位数放在这个两位数的左边所成的三位数,比把这个一位数放在这个两位数的右边所成的三位数大252,求这个两位数.解答方法:通过数位的分析,列出方程进行求解。本题难点是设。设这个一位数为。或答案:4或74.利润(利息)问题利息问题
(1)概念:
本金:顾客存入银行的钱叫本金.
利息:银行付给顾客的酬金叫利息.
本息和:本金和利息的和叫本息和.
期数:存入银行的时间叫期数.
利率:每个期数内的利息与本金的比叫利率.
(2)公式:
利息=本金×利率×期数
利息税=利息×税率
本金×(1+利率×期数)=本息和
本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)
利润(销售)问题
利润(销售)问题中常用的等量关系:
利润=售价-进价(成本)
总利润=每件的利润×总件数
【例4】某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【答案与解析】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,级定价为56元,答:应将销售单价定位56元.【变式】(2022•宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加%,则5月份再生纸项目月利润达到66万元.求m的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?【解答】解:(1)设3月份再生纸的产量为x吨,则4月份再生纸的产量为(2x﹣100)吨,依题意得:x+2x﹣100=800,解得:x=300,∴2x﹣100=2×300﹣100=500.答:4月份再生纸的产量为500吨.(2)依题意得:1000(1+%)×500(1+m%)=660000,整理得:m2+300m﹣6400=0,解得:m1=20,m2=﹣320(不合题意,舍去).答:m的值为20.(3)设4至6月每吨再生纸利润的月平均增长率为y,5月份再生纸的产量为a吨,依题意得:1200(1+y)2•a(1+y)=(1+25%)×1200(1+y)•a,∴1200(1+y)2=1500.答:6月份每吨再生纸的利润是1500元.5.比赛统计问题比赛问题:解决此类问题的关键是分清单循环和双循环
.【例5】(2022•黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8 B.10 C.7 D.9【解答】解:设共有x支队伍参加比赛,根据题意,可得,解得x=10或x=﹣9(舍),∴共有10支队伍参加比赛.故选:B.【变式】(2023秋·云南昆明·九年级统考期末)中国男子篮球职业联赛(简称:CBA),分常规赛和季后赛两个阶段进行,采用主客场赛制(也就是参赛的每两个队之间都进行两场比赛).2022-2023CBA常规赛共要赛240场,则参加比赛的队共有()A.80个 B.120个 C.15个 D.16个【答案】D【详解】解:设参加比赛的队共有x,根据题意可得:,解得:,(舍去),故选:D.6.传播问题传播问题:,a表示传染前的人数,x表示每轮每人传染的人数,n表示传染的轮数或天数,A表示最终的人数.【例6】(2023秋·浙江台州·九年级统考期末)一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染个人.根据题意列出方程为(
)A. B.C. D.【答案】C【详解】解:设每轮传染中平均一个人传染个人,则第一轮传染后总传染人数为,第二轮后总传染人数为,因此.故选C.【点睛】本题考查一元二次方程的实际应用,找准等量关系是解题的关键.【变式】(2023·宁夏银川·校考一模)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染个人,可到方程为(
)A. B. C. D.【答案】D【详解】解:,整理得,.故选:D.【方法二】实例探索法题型1:列一元二次方程解“传播”问题1.有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了(
)个人.A.8 B.9 C.10 D.11【答案】C【详解】解:设每轮传染中平均一个人传染了x个人,依题意得:,即,解方程得(舍去),即每轮传染中平均一个人传染了10个人;2.(2023·宁夏银川·校考一模)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染个人,可到方程为(
)A. B. C. D.【答案】D【详解】解:,整理得,.3.(2023秋·云南昆明·九年级统考期末)中国男子篮球职业联赛(简称:CBA),分常规赛和季后赛两个阶段进行,采用主客场赛制(也就是参赛的每两个队之间都进行两场比赛).2022-2023CBA常规赛共要赛240场,则参加比赛的队共有()A.80个 B.120个 C.15个 D.16个【答案】D【详解】解:设参加比赛的队共有x,根据题意可得:,解得:,(舍去),题型2:列一元二次方程解“利润”问题4.(2022秋·甘肃平凉·九年级校考阶段练习)某商场销售一批服装,平均每天可售出20件,每件盈利40元,经市场调查发现,每件服装每降价1元,商场平均每天就可以多售出2件,若使商场每天盈利1200元,每件服装应降价多少元?【答案】每件服装应降价10元或20元.【详解】解:设每件服装应降价x元,根据题意可得:,整理得:,解得:,答:每件服装应降价10元或20元.5.(2023秋·广东惠州·九年级统考期末)某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件元,求两次下降的百分率;(2)经调查,若该商品每降价元,每天可多销售4件,那么每天要想获得512元的利润,每件应降价多少元?【答案】(1)(2)2元【详解】(1)解:设每次降价的百分率为,由题意,得,(不符合题意,舍去).答:该商品连续两次下调相同的百分率后售价降至每件元,两次下降的百分率为;(2)解:设每天要想获得512元的利润,且更有利于减少库存,则每件商品应降价元,由题意,得,解得:.答:要使商场每天要想获得512元的利润,每件应降价2元.6.(2022秋·广东佛山·九年级校联考阶段练习)2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.为满足市场需求,某超市购进一批吉祥物“冰墩墩”,进价为每个15元,第一天以每个25元的价格售出30个,为了让更多的消费者拥有“冰墩墩”,从第二天起降价销售,根据市场调查,单价每降低1元,可多售出3个.(1)当售价小于25元时,试求出第二天起每天的销售量y(个)与每个售价x(元)之间的函数关系式;(2)如果前两天共获利525元,则第二天每个“冰墩墩”的销售价格为多少元?【答案】(1)(2)第二天每个“冰墩墩”的销售价格为20元【详解】(1)解:由题意可得,第二天起每天的销售量y(个)与每个售价x(元)之间的函数关系式为;(2)解:由题意可得,整理得,解得,,当时,不符合题中让更多的消费者拥有“冰墩墩”降价的主旨,,答:第二天每个“冰墩墩”的销售价格为20元.题型3:列一元二次方程解“图形面积”问题7.(2023·黑龙江·统考中考真题)如图,在长为,宽为的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是,则小路的宽是(
)
A. B. C.或 D.【答案】A【详解】解:设小路宽为,则种植花草部分的面积等于长为,宽为的矩形的面积,依题意得:解得:,(不合题意,舍去),∴小路宽为.8.(2023·山东淄博·统考二模)如图,在一块长,宽的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成6个矩形小块(阴影部分),如果6个矩形小块的面积和为,那么水渠应挖多宽?若设水渠应挖xm宽,则根据题意,下面所列方程中正确的是(
)
A. B.C. D.【答案】A【详解】解:由题意知,6个矩形小块通过平移可以得到一个大的矩形,长为,宽为,6个矩形小块的面积和为,.故选A.9.(2023·全国·九年级假期作业)空地上有一段长为a米的旧墙,工人师傅欲利用旧墙和木棚栏围成一个封闭的长方形菜园(如图),已知木栅栏总长为40米,所围成的长方形菜园面积为S平方米.若,,则()
A.有一种围法 B.有两种围法 C.不能围成菜园 D.无法确定有几种围法【答案】A【详解】解:如图所示,设矩形的边为x米,则宽为米,
根据题意得:,即:,解得:,,而,∴,∴,∴只有一种围法,10.如图,在宽为,长为的矩形地面上修建两条同样宽且互相垂直的道路,其余部分作为耕地为.则道路的宽为是______.【答案】1米【详解】解:设道路的宽为.由题意可得:,整理得:,
解得:,(不符合题意,舍去).∴道路的宽为米.11.(2023·全国·九年级专题练习)如图是一块矩形菜地,面积为.现将边增加.
(1)如图1,若,边减少,得到的矩形面积不变,则的值是__________.(2)如图2,若边增加,有且只有一个的值,使得到的矩形面积为,则的值是__________.【答案】6/【详解】(1)根据题意,得,起始长方形的面积为,变化后长方形的面积为,∵,边减少,得到的矩形面积不变,∴,解得,故答案为:6.(2)根据题意,得,起始长方形的面积为,变化后长方形的面积为,∴,,∴,∴,∴,∵有且只有一个的值,∴,∴,解得(舍去),12.(2023·山东东营·统考中考真题)如图,老李想用长为的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈,并在边上留一个宽的门(建在处,另用其他材料).
(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640的羊圈?(2)羊圈的面积能达到吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的长为,宽为或长为,宽为时,能围成一个面积为的羊圈;(2)不能,理由见解析.【详解】(1)解:设矩形的边,则边.根据题意,得.化简,得.解得,.当时,;当时,.答:当羊圈的长为,宽为或长为,宽为时,能围成一个面积为的羊圈.(2)解:不能,理由如下:由题意,得.化简,得.∵,∴一元二次方程没有实数根.∴羊圈的面积不能达到.13.(2023秋·湖北襄阳·九年级统考期末)如图,要设计一幅宽,长的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为.如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?
【答案】横条的宽度为,竖条的宽度为【详解】解:设横条的宽度为,竖条的宽度为,依题意得:整理得:∵∴方程的两根分别为:,,当时,∴舍去∴∴,∴横条的宽度为,竖条的宽度为.题型4:列一元二次方程解“动点”问题14.(2023春·黑龙江大庆·九年级校考期末)如图,在中,,,,现有动点P从点A出发,沿向点C方向运动,动点Q从点C出发,沿线段向点B方向运动,如果点P的速度是,点Q的速度是.P、Q两点同时出发,当有一点到达所在线段的端点时,另一点停止运动.设运动时间为t秒.当__________s时,平分的面积.【答案】2【详解】解:根据题意,,,∵,,∴,点Q到B点的时间为,点P到C点的时间为,∵P、Q两点同时出发,当有一点到达所在线段的端点时,另一点停止运动.∴,当平分的面积时,,即,∴,整理得,解得,(舍去),∴当时,平分的面积.故答案为:2.15.如图,矩形中,,,点从开始沿边向点以厘米/秒的速度移动,点从点开始沿边向点以厘米/秒的速度移动,如果、分别是从同时出发,求经过几秒时,(1)的面积等于平方厘米?(2)五边形的面积最小?最小值是多少?【答案】(1)2秒或4秒(2)3秒时,五边形的面积最小,最小值是63平方厘米【详解】(1)解:设运动时间为,则,,则,解得:或.∴经过2秒或4秒时,的面积等于8平方厘米.(2)由(1)可得:∴要使的面积有最大值,则要使取最大值,则此时,面积为9,则此时五边形的面积最小,最小值为.16.(2022秋·陕西西安·九年级校考期中)如图,已知A、B、C、D为矩形的四个顶点,,,动点P、Q分别从点A、C同时出发,点P以的速度向点B移动,一直到点B为止,点Q以的速度向点D移动.问:(1)P、Q两点从出发开始几秒时,四边形的面积为?(2)几秒时点P点Q间的距离是10厘米?(3)P,Q两点间距离何时最小?【答案】(1)5秒(2)秒或秒(3)秒【详解】(1)解:当运动时间为t秒时,,,依题意,得:,解得:.答:P,Q两点从出发开始到5秒时,四边形的面积为.(2)设出发秒后、两点间的距离是10厘米.则,.作于,则,,解得:或,∴、出发或秒时,,间的距离是10厘米;(3),当时,即时,最小.【方法三】仿真实战法一.选择题(共4小题)1.(2023•哈尔滨)为了改善居民生活环境,云宁小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x米,根据题意,所列方程正确的是()A.x(x﹣6)=720 B.x(x+6)=720 C.x(x﹣6)=360 D.x(x+6)=360【分析】先表示出矩形空地的宽,再根据矩形的面积为720平方米列出方程,本题得以解决.【解答】解:设矩形空地的长为x米,则设矩形空地的宽为(x﹣6)米,由题意可得,x(x﹣6)=720,故选:A.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.2.(2023•无锡)2020年﹣2022年无锡居民人均可支配收入由5.76万元增长至6.58万元,设人均可支配收入的平均增长率为x,下列方程正确的是()A.5.76(1+x)2=6.58 B.5.76(1+x2)=6.58 C.5.76(1+2x)=6.58 D.5.76x2=6.58【分析】根据2020年的人均可支配收入×(1+年平均增长率)2=2022年的人均可支配收入,列出一元二次方程即可.【解答】解:由题意得:5.76(1+x)2=6.58.故选:A.【点评】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3.(2023•黑龙江)如图,在长为100m,宽为50m的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是3600m2,则小路的宽是()A.5m B.70m C.5m或70m D.10m【分析】设小路的宽是xm,则余下的部分可合成长为(100﹣2x)m,宽为(50﹣2x)m的矩形,根据花圃的面积是3600m2,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:设小路的宽是xm,则余下的部分可合成长为(100﹣2x)m,宽为(50﹣2x)m的矩形,根据题意得:(100﹣2x)(50﹣2x)=3600,整理得:x2﹣75x+350=0,解得:x1=5,x2=70(不符合题意,舍去),∴小路的宽是5m.故选:A.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4.(2023•广西)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x,依题意可列方程为()A.3.2(1﹣x)2=3.7 B.3.2(1+x)2=3.7 C.3.7(1﹣x)2=3.2 D.3.7(1+x)2=3.2【分析】根据2020年的人均可支配收入×(1+年平均增长率)2=2022年的人均可支配收入,列出一元二次方程即可.【解答】解:由题意得:3.2(1+x)2=3.7,故选:B.【点评】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共3小题)5.(2023•重庆)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程301(1+x)2=500.【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.(2023•邵阳)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程思想,设这两年绿化面积的年平均增长率为x,则依题意列方程为1000(1+x)2=1440.【分析】根据2022年底绿化面积×(1+年平均增长率)2=2024年底绿化面积,列出一元二次方程即可.【解答】解:根据题意得:1000(1+x)2=1440,故答案为:1000(1+x)2=1440.【点评】此题主要考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.(2023•重庆)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,设七、八两个月提供就业岗位数量的月平均增长率为x,根据题意,可列方程为1501(1+x)2=1815.【分析】根据今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个,列一元二次方程即可.【解答】解:根据题意,得1501(1+x)2=1815,故答案为:1501(1+x)2=1815.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.三.解答题(共2小题)8.(2023•郴州)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?【分析】(1)设这两个月中该景区游客人数的月平均增长率为x,由2月份游客人数为1.6万人,4月份游客人数为2.5万人,列出方程可求解;(2)设5月份后10天日均接待游客人数是a万人,由增长率不会超过前两个月的月平均增长率,列出不等式,即可求解.【解答】解:(1)设这两个月中该景区游客人数的月平均增长率为x,由题意可得:1.6(1+x)2=2.5,解得:x=25%,x=﹣(不合题意舍去),答:这两个月中该景区游客人数的月平均增长率为25%;(2)设5月份后10天日均接待游客人数是a万人,由题意可得:2.125+10a≤2.5(1+25%),解得:a≤0.1,答:5月份后10天日均接待游客人数最多是0.1万人.【点评】本题考查了一元二次方程的应用,一元一次不等式的应用,找到正确的数量关系是解题的关键.9.(2023•东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【分析】(1)根据BC=栅栏总长﹣2AB,再利用矩形面积公式即可求出;(2)把S=650代入x(72﹣2x)中函数解析式中,解方程,取在自变量范围内的值即可.【解答】解:(1)设矩形ABCD的边AB=xm,则边BC=70﹣2x+2=(72﹣2x)m.根据题意,得x(72﹣2x)=640,化简,得x2﹣36x+320=0,解得x1=16,x2=20,当x=16时,72﹣2x=72﹣32=40;当x=20时,72﹣2x=72﹣40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)答:不能,理由:由题意,得x(72﹣2x)=650,化简,得x2﹣36x+325=0,Δ=(﹣36)2﹣4×325=﹣4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.【点评】本题考查了一元二次方程的应用,找到周长等量关系是解决本题的关键.【方法四】成功评定法一.选择题(共10小题)1.(2023春•南岗区期末)某农家前年水蜜桃亩产量为800千克,今年的亩产量为1200千克.设从前年到今年平均增长率都为x,则可列方程()A.800(1+2x)=1200 B.800(1+x2)=1200 C.800(1+x)2=1200 D.800(1+x)=1200【分析】可先表示出去年水蜜桃的亩产量,那么去年水蜜桃的亩产量×(1+增长率)=1200,把相应数值代入即可求解.【解答】解:去年水蜜桃的亩产量为800×(1+x),今年水蜜桃的亩产量在去年水蜜桃的亩产量的基础上增加x,为800×(1+x)×(1+x),则列出的方程是800(1+x)2=1200,故选C.【点评】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.2.(2023春•西和县期中)直角三角形两条直角边的和为7,面积是6,则斜边长是()A. B.5 C. D.7【分析】设其中一条直角边的长为x,则另一条直角边的长为(7﹣x),根据三角形的面积为x建立方程就可以求出两直角边,由勾股定理就可以求出斜边.【解答】解:设其中一条直角边的长为x,则另一条直角边的长为(7﹣x),由题意,得x(7﹣x)=6,解得:x1=3.,x2=4,由勾股定理,得斜边为:=5.故选:B.【点评】本题考查了三角形的面积公式的运用,勾股定理的运用.列一元二次方程解实际问题的运用,解答时根据面积公式建立方程求出直角边是关键.3.(2022秋•和平区校级月考)一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.若设这次会议到会的人数为x人,依题意可列方程()A.x(x﹣1)=66 B.=66 C.x(1+x)=66 D.x(x﹣1)=66【分析】利用参会人员共握手次数=参会人数×(参会人数﹣1)÷2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:x(x﹣1)=66.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.(2023•南通二模)有1人患了流感后,经过两轮传染后共有144人患了流感,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x人,则根据题意可列方程()A.(1+x)2=144 B.(1+x2)=144 C.(1﹣x)2=144 D.(1﹣x2)=144【分析】由每轮传染中平均一个人传染了x人,可得出第一轮有x人被传染,第二轮有x(1+x)人被传染,结合“有1人患了流感后,经过两轮传染后共有144人患了流感”,即可列出关于x的一元二次方程,此题得解.【解答】解:∵每轮传染中平均一个人传染了x人,∴第一轮有x人被传染,第二轮有x(1+x)人被传染.根据题意得:1+x+x(1+x)=144,∴(1+x)2=144.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(2023•阜新一模)如图,某校生物兴趣小组用长为18米的篱笆,一面利用墙(墙的长度足够),围成中间隔有一道篱笆的长方形花圃ABCD,为了方便出入,建造篱笆花圃时在BC边留了宽为1米的两个进出口(不需材料),若花圃的面积刚好为40平方米,设AB的长为x米,则可列方程为()A.x(18﹣3x)=40 B.x(20﹣2x)=40 C.x(22﹣3x)=40 D.x(20﹣3x)=40【分析】根据篱笆的总长及AB的长,可得出BC的长,再利用长方形的面积公式,即可列出关于x的一元二次方程,此题得解.【解答】解:∵篱笆的总长为18米,AB的长为x米,∴BC的长为18+2﹣3x=(20﹣3x)米.根据题意得:x(20﹣3x)=40.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.(2023•兴庆区校级模拟)一件工艺品进价为100元,标价130元售出,每天平均可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出5件,某店为减少库存量,同时使每天平均获得的利润为3000元,每件需降价的钱数为()A.12元 B.10元 C.8元 D.5元【分析】设每件工艺品降价x元,则每天的销售量为(100+5x)件,根据每日的利润=每件的利润×日销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:设每件工艺品降价x元,则每天的销售量为(100+5x)件,根据题意得:(130﹣100﹣x)(100+5x)=3000,整理得:x2﹣10x=0,解得:x1=0,x2=10.∵要减少库存量,∴x=10.故选:B.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.(2021•新民市开学)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施,假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,衬衫的单价降了x元,那么下面所列的方程正确的是()A.(20+x)(40﹣2x)=1250 B.(20+x)(40﹣x)=1250 C.(20+2x)(40﹣2x)=1250 D.(20+2x)(40﹣x)=1250【分析】设衬衫的单价降了x元.根据题意等量关系:降价后的销量×每件的利润=1250,根据等量关系列出方程即可.【解答】解:设衬衫的单价降了x元.根据题意,得(20+2x)(40﹣x)=1250,故选:D.【点评】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.8.(2023春•道里区期末)有一人患了流感,经过两轮传染后共有169人患了流感,设每轮传染中平均一个人传染了x人,则x的值为()A.11 B.12 C.13 D.14【分析】设每轮传染中平均一个人传染x个人,根据经过两轮传染后共有169人患了流感,即可得出关于x的一元二次方程,此题得解.【解答】解:根据题意得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(舍去).则x的值是12.故选:B.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解决本题的关键.9.(2021秋•滕州市校级月考)随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前价格的.这种电子产品的价格在这两年中平均每年下降百分之几?()A.25% B.37.5% C.50% D.75%【分析】直接利用下降率求法(1﹣x)2=今年年底的价格,进而得出答案.【解答】解:设这种电子产品的价格在这两年中平均每年下降x,根据题意可得:(1﹣x)2=,解得:x1=0.5=50%,x2=1.5(不合题意舍去),即:这种电子产品的价格在这两年中平均每年下降50%.故选:C.【点评】此题主要考查了一元二次方程的应用,正确得出等量关系是解题关键.10.(2022秋•昌图县期末)初中毕业时,某班学生都将自己的照片向全班其他同学各送一张表示留念,全班共送1260张照片.设全班有x名同学,可列方程为()A.x(x﹣1)=1260 B.x(x+1)=1260 C.x(x﹣1)=1260×2 D.x(x+1)=1260×2【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1260.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程.计算全班共送多少张,首先确定一个人送出多少张是解题关键.二.填空题(共8小题)11.(2022秋•兴隆台区校级月考)鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,设每只病鸡传染健康鸡的只数为x只,则可列方程为1+x+x(1+x)=169.【分析】由每只病鸡传染健康鸡的只数为x只,可得出第一天有x只鸡被传染,第二天有x(1+x)只鸡被传染,结合“红发养鸡场某日发现一例,两天后发现共有169只鸡患有这种病”,即可得出关于x的一元二次方程,此题得解.【解答】解:∵每只病鸡传染健康鸡的只数为x只,∴第一天有x只鸡被传染,第二天有x(1+x)只鸡被传染,根据题意得:1+x+x(1+x)=169.故答案为:1+x+x(1+x)=169.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.12.(2022秋•沙依巴克区校级期末)一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是98.【分析】设这个两位数个位上的数字为x,则十位上的数字为(x+1),根据个位数字与十位数字的乘积等于72,即可得出关于x的一元二次方程,解之即可得出x的值,将其正值代入[10(x+1)+x]中即可求出结论.【解答】解:设这个两位数个位上的数字为x,则十位上的数字为(x+1),依题意,得:x(x+1)=72,整理,得:x2+x﹣72=0,解得:x1=﹣9(不合题意,舍去),x2=8,∴10(x+1)+x=10×(8+1)+8=98.故答案为:98.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.(2023春•栖霞市期末)某市实施精准扶贫的决策部署以来,贫困户甲2014年人均纯收入为2600元,经过帮扶到2016年人均纯收入为5096元,则该贫困户每年纯收入的平均增长率为40%.【分析】设该贫困户每年纯收入的平均增长率为x,利用该贫困户2016年人均纯收入=该贫困户2014年人均纯收入×(1+该贫困户每年纯收入的平均增长率)2,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:设该贫困户每年纯收入的平均增长率为x,根据题意得:2600(1+x)2=5096,解得:x1=0.4=40%,x2=﹣2.4(不符合题意,舍去),∴该贫困户每年纯收入的平均增长率为40%.故答案为:40%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.(2022秋•武清区校级月考)参加足球联赛的每两个队之间都进行两次比赛,共要比赛72场,共有9个队参加比赛.【分析】每个队都要与其余队比赛一场,2队之间要赛2场.等量关系为:队的个数×(队的个数﹣1)=72,把相关数值代入计算即可.【解答】解:设有x队参加比赛.x(x﹣1)=72,(x﹣9)(x+8)=0,解得x=9,x=﹣8(不合题意,舍去).故答案为:9.【点评】本题考查一元二次方程的应用,得到比赛总场数的等量关系是解决本题的关键.15.(2022秋•中宁县期中)两个数的积为12,和为7,设其中一个数为x,则依题意可列方程x2﹣7x+12=0.【分析】如果设其中一个数为x,那么另一个数为(6﹣x),根据乘积等于5,那么可列出方程.【解答】解:设其中一个数为x,那么另一个数为(7﹣x),∵两个数的积为12,∴x(7﹣x)=12,整理得:x2﹣7x+12=0.故答案为:x2﹣7x+12=0.【点评】此题考查一元二次方程的运用,题目不难,重在看准题.16.(2023春•东阳市月考)2022年东阳市初中男生篮球比赛在小组初赛之后,每个小组的第一名再进行决赛,决赛采用单循环比赛(单循环比赛是指所有参赛队伍可在比赛中相遇一次)方式,单循环比赛共进行了15场,参加比赛的队伍共有10支.【分析】设参加比赛的队伍共有x支,可列方程:x(x﹣1)=45,即可解得参加比赛的队伍共有10支.【解答】解:设参加比赛的队伍共有x支,根据题意得:x(x﹣1)=45,解得x=10或x=﹣9(舍去),∴参加比赛的队伍共有10支;故答案为:10.【点评】本题考查一元二次方程的应用,解题的关键是读懂题意,列出一元二次方程解决问题.17.(2023春•九龙坡区月考)从正方形的铁片上,沿正方形边长截去3cm宽的一条长方形,余下面积为40cm2,则原来的正方形铁片的面积是64cm2.【分析】可设正方形的边长是xcm,根据“余下的面积为40cm2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是(x﹣3)cm,根据矩形的面积公式即可列出方程求解.【解答】解:设正方形的边长是xcm,根据题意得x(x﹣3)=40,解得x1=﹣5(舍去),x2=8,故原正方形铁片的面积是8×8=64(cm2).故答案为:64.【点评】本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.解题过程中要注意根据实际意义进行值的取舍.18.(2022秋•仓山区校级月考)如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s;同时,动点Q从点B出发,沿BC方向运动,速度是1cm/s,则经过10s后,P,Q两点之间相距25cm.【分析】设x秒后P、Q两点相距25cm,用x表示出CP、CQ,根据勾股定理列出方程,解方程即可.【解答】解:设x秒后P、Q两点相距25cm,则CP=2xcm,CQ=(25﹣x)cm,由题意得,(2x)2+(25﹣x)2=252,解得,x1=10,x2=0(舍去),则10秒后P、Q两点相距25cm.故答案为:10.【点评】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.三.解答题(共8小题)19.(2022秋•沈丘县校级月考)有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求这个两位数.【分析】设个位为x,则十位上的数字为8﹣x,根据如果十位上的数字与个位上的数字对调,则所得两位数乘以原来的两位数就得1855,求解即可.【解答】解:设原来个位为x,则十位上的数字为8﹣x,由题意得,[10×(8﹣x)+x][10x+8﹣x]=1855解得:x1=3,x2=5,原来十位上的数字为5或3,答:原来这个两位数53或35.【点评】本题考查了一元二次次方程的应用,解答本题的关键是表示出对调前后两位数的表示方法.20.(2022秋•绿园区校级期末)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(2022秋•昆明期末)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若家庭年人均纯收入达到4000元就可以脱贫,年平均增长率保持不变,那么2019年该贫困户是否能脱贫?【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,利用该贫困户2018年家庭年人均纯收入=该贫困户2016年家庭年人均纯收入×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用该贫困户2019年家庭年人均纯收入=该贫困户2018年家庭年人均纯收入×(1+增长率),可求出该贫困户2019年家庭年人均纯收入,再将其与4000比较后即可得出结论.【解答】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,依题意得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)3600×(1+20%)=4320(元),∵4320>4000,∴2019年该贫困户能脱贫.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(2021秋•莘县期末)2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?【分析】(1)设每轮传染中平均每个人传染了x个人,根据一人患病后经过两轮传染后共有169人患病,即可得出关于x的一元二次方程,解之即可得出结论;(2)根据经过三轮传染后患病人数=经过两轮传染后患病人数×(1+12),即可求出结论.【解答】解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(2022秋•渝中区期末)渝中区正在进行旧城改造和旅游升级,即将改造完毕的大田湾体育场外广场正在打造体育生态公园,实现体育与环境的完美结合,为周边群众创造更加舒适的健身休闲环境.体育场准备利用一堵呈“L”形的围墙(粗线A﹣B﹣C表示墙,墙足够高)改建室外篮球场,如图所示,已知AB⊥BC,AB=10米,BC=70米,现计划用总长为121米的围网围建呈“日”字形的两个篮球场,并在每个篮球场开一个宽2米的门,如图所示(细线表示围网,两个篮球场之间用围网GH隔开),为了充分利用墙体,点F必须在线段BC上.(1)如图,设EF的长为x米,则DE=(135﹣3x)米;(用含x的代数式表示)(2)若围成的篮球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂保安工作总结及安全隐患分析
- 水处理厂操作安全与风险控制方案
- 国际会议筹备网格化方案
- 词语理解运用(闯关训练)(解析版) -2025年部编版中考语文一轮复习
- 2024-2025学年高中物理第3章磁场3磁感应强度磁通量学案教科版选修3-1
- 备战2024中考物理一轮复习单元达标全攻略专题19生活用电含解析
- 2024-2025学年高中历史第六单元和平与发展第1课联合国的建立及其作用习题含解析新人教版选修3
- 2024-2025学年高中数学第一章计数原理1.2.2第1课时组合与组合数公式跟踪训练含解析新人教A版选修2-3
- 2024年工程全面承揽合同指南
- 2025届新教材高考政治一轮复习课时规范练37依法有效保护财产权含解析部编版
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- 2024浙江绍兴市人才发展集团第1批招聘4人(第1号)高频难、易错点500题模拟试题附带答案详解
- 幼儿园说课概述-课件
- 冠状动脉介入风险预测评分的临床应用
- 35导数在经济中的应用
- 苏科版(2024新版)七年级上册数学期中学情评估测试卷(含答案)
- 部编版《道德与法治》三年级上册第10课《父母多爱我》教学课件
- 期中模拟检测(1-3单元)2024-2025学年度第一学期西师大版二年级数学
- 气管插管操作规范(完整版)
- 2024-2025学年外研版英语八年级上册期末作文范文
- 四级劳动关系协调员试题库含答案
评论
0/150
提交评论