版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ChilledWaterSystems[1][1]节选自JamesB.Bradfordetal.“HVACEquipmentandSystems”.HandbookofHeating,Ventilation,andAir-Conditioning.Ed.JanF.Kreider.BocaRaton,CRCPressLLC.2001Chilledwatersystemswereusedinlessthan4%ofcommercialbuildingsintheU.S.in1995.However,becausechillersareusuallyinstalledinlargerbuildings,chillerscooledover28%oftheU.S.commercialbuildingfloorspacethatsameyear(DOE,1998).Fivetypesofchillersarecommonlyappliedtocommercialbuildings:reciprocating,screw,scroll,centrifugal,andabsorption.Thefirstfourutilizethevaporcompressioncycletoproducechilledwater.Theydifferprimarilyinthetypeofcompressorused.Absorptionchillersutilizethermalenergy(typicallysteamorcombustionsource)inanabsorptioncyclewitheitheranammonia-waterorwater-lithiumbromidesolutiontoproducechilledwater.OverallSystemFigure4.2.2showsasimplerepresentationofadualchillerapplicationwithallthemajorauxiliaryequipment.Anestimated86%ofchillersareappliedinmultiplechillerarrangementslikethatshowninthefigure(BitondoandTozzi,1999).Inchilledwatersystems,returnwaterfromthebuildingiscirculatedthrougheachchillerevaporatorwhereitiscooledtoanacceptabletemperature(typically4to7°C)(39to45°F).Thechilledwateristhendistributedtowater-to-airheatexchangersspreadthroughoutthefacility.Intheseheatexchangers,airiscooledanddehumidifiedbythecoldwater.Duringtheprocess,thechilledwaterincreasesintemperatureandmustbereturnedtothechiller(s).ThechillersshowninFigure4.2.2arewater-cooledchillers.Wateriscirculatedthroughthecondenserofeachchillerwhereitabsorbsheatenergyrejectedfromthehighpressurerefrigerant.Thewateristhenpumpedtoacoolingtowerwherethewateriscooledthroughanevaporationprocess.Coolingtowersaredescribedinalatersection.Chillerscanalsobeaircooled.Inthisconfiguration,thecondenserwouldbearefrigerant-to-airheatexchangerwithairabsorbingtheheatenergyrejectedbythehighpressurerefrigerant.Chillersnominallyrangeincapacitiesfrom30to18,000kW(8to5100ton).MostchillerssoldintheU.S.areelectricandutilizevaporcompressionrefrigerationtoproducechilledwater.Compressorsforthesesystemsareeitherreciprocating,screw,scroll,orcentrifugalindesign.Asmallnumberofcentrifugalchillersaresoldthatuseeitheraninternalcombustionengineorsteamdriveinsteadofanelectricmotortodrivethecompressor.FIGURE4.2.2Adualchillerapplicationwithmajorauxiliarysystems(courtesyofCarrierCorporation).Thetypeofchillerusedinabuildingdependsontheapplication.Forlargeofficebuildingsorinchillerplantsservingmultiplebuildings,centrifugalcompressorsareoftenused.Inapplicationsunder1000kW(280tons)coolingcapacities,reciprocatingorscrewchillersmaybemoreappropriate.Insmallerapplications,below100kW(30tons),reciprocatingorscrollchillersaretypicallyused.VaporCompressionChillersTable4.2.5showsthenominalcapacityrangesforthefourtypesofelectricallydrivenvaporcompressionchillers.Eachchillerderivesitsnamefromthetypeofcompressorusedinthechiller.Thesystemsrangeincapacitiesfromthesmallestscroll(30kW;8tons)tothelargestcentrifugal(18,000kW;5000tons).ChillerscanutilizeeitheranHCFC(R-22andR-123)orHFC(R-134a)refrigerant.Thesteadystateefficiencyofchillersisoftenstatedasaratioofthepowerinput(inkW)tothechillingcapacity(intons).Acapacityratingofonetonisequalto3.52kWor12,000btu/h.Withthismeasureofefficiency,thesmallernumberisbetter.Asseenin,centrifugalchillersarethemostefficient;whereas,reciprocatingchillershavetheworstefficiencyofthefourtypes.Theefficiencynumbersprovidedinthetablearethesteadystatefull-loadefficiencydeterminedinaccordancetoASHRAEStandard30(ASHRAE,1995).Theseefficiencynumbersdonotincludetheauxiliaryequipment,suchaspumpsandcoolingtowerfansthatcanaddfrom0.06to0.31kW/tontothenumbersshown(Smitetal.,1996).Chillersrunatpartloadcapacitymostofthetime.Onlyduringthehighestthermalloadsinthebuildingwillachilleroperatenearitsratedcapacity.Asaconsequence,itisimportanttoknowhowtheefficiencyofthechillervarieswithpartloadcapacity.Figure4.2.3showsarepresentativedatafortheefficiency(inkW/ton)asafunctionofpercentagefullloadcapacityforareciprocating,screw,andscrollchillerplusacentrifugalchillerwithinletvanecontrolandonewithvariablefrequencydrive(VFD)forthecompressor.Thereciprocatingchillerincreasesinefficiencyasitoperatesatasmallerpercentageoffullload.Incontrast,theefficiencyofacentrifugalwithinletvanecontrolisrelativelyconstantuntiltheloadfallstoabout60%ofitsratedcapacityanditskW/tonincreasestoalmosttwiceitsfullyloadedvalue.FIGURE4.2.3Chillerefficiencyasafunctionofpercentageoffullloadcapacity.In1998,theAirConditioningandRefrigerationInstitute(ARI)developedanewstandardthatincorporatesintotheirratingspartloadperformanceofchillers(ARI1998c).Partloadefficiencyisexpressedbyasinglenumbercalledtheintegratedpartloadvalue(IPLV).TheIPLVtakesdatasimilartothatinFigure4.2.3andweightsitatthe25%,50%,75%,and100%loadstoproduceasingleintegratedefficiencynumber.Theweightingfactorsattheseloadsare0.12,0.45,0.42,and0.01,respectively.TheequationtodetermineIPLVis:MostoftheIPLVisdeterminedbytheefficiencyatthe50%and75%partloadvalues.Manufacturerswillprovide,onrequest,IPLVsaswellaspartloadefficienciessuchasthoseshownin.FIGURE4.2.4Volume-pressurerelationshipsforareciprocatingcompressor.Thefourcompressorsusedinvaporcompressionchillersareeachbrieflydescribedbelow.Whilecentrifugalandscrewcompressorsareprimarilyusedinchillerapplications,reciprocatingandscrollcompressorsarealsousedinsmallerunitarypackagedairconditionersandheatpumps.ReciprocatingCompressorsThereciprocatingcompressorisapositivedisplacementcompressor.Ontheintakestrokeofthepiston,afixedamountofgasispulledintothecylinder.Onthecompressionstroke,thegasiscompresseduntilthedischargevalveopens.Thequantityofgascompressedoneachstrokeisequaltothedisplacementofthecylinder.Compressorsusedinchillershavemultiplecylinders,dependingonthecapacityofthecompressor.Reciprocatingcompressorsuserefrigerantswithlowspecificvolumesandrelativelyhighpressures.MostreciprocatingchillersusedinbuildingapplicationscurrentlyemployR-22.Modernhigh-speedreciprocatingcompressorsaregenerallylimitedtoapressureratioofapproximatelynine.Thereciprocatingcompressorisbasicallyaconstant-volumevariable-headmachine.Ithandlesvariousdischargepressureswithrelativelysmallchangesininlet-volumeflowrateasshownbytheheavyline(labeled16cylinders)in.Condenseroperationinmanychillersisrelatedtoambientconditions,forexample,throughcoolingtowers,sothatoncoolerdaysthecondenserpressurecanbereduced.Whentheairconditioningloadislowered,lessrefrigerantcirculationisrequired.Theresultingloadcharacteristicisrepresentedbythesolidlinethatrunsfromtheupperrighttolowerleftof.Thecompressormustbecapableofmatchingthepressureandflowrequirementsimposedbythesystem.Thereciprocatingcompressormatchestheimposeddischargepressureatanyleveluptoitslimitingpressureratio.Varyingcapacityrequirementscanbemetbyprovidingdevicesthatunloadindividualormultiplecylinders.Thisunloadingisaccomplishedbyblockingthesuctionordischargevalvesthatopeneithermanuallyorautomatically.Capacitycanalsobecontrolledthroughtheuseofvariablespeedormulti-speedmotors.Whencapacitycontrolisimplementedonacompressor,otherfactorsatpart-loadconditionsneedtoconsidered,suchas(a)effectoncompressorvibrationandsoundwhenunloadersareused,(b)theneedforgoodoilreturnbecauseoflowerrefrigerantvelocities,and(c)properfunctioningofexpansiondevicesatthelowercapacities.Withmostreciprocatingcompressors,oilispumpedintotherefrigerationsystemfromthecompressorduringnormaloperation.Systemsmustbedesignedcarefullytoreturnoiltothecompressorcrankcasetoprovideforcontinuouslubricationandalsotoavoidcontaminatingheat-exchangersurfaces.Reciprocatingcompressorsusuallyarearrangedtostartunloadedsothatnormaltorquemotorsareadequateforstarting.Whengasenginesareusedforreciprocatingcompressordrives,carefulmatchingofthetorquerequirementsofthecompressorandenginemustbeconsidered.FIGURE4.2.5Illustrationofatwin-screwcompressordesign(courtesyofCarrierCorporation).ScrewCompressorsScrewcompressors,firstintroducedin1958(Thevenot,1979),arepositivedisplacementcompressors.Theyareavailableinthecapacityrangesthatoverlapwithreciprocatingcompressorsandsmallcentrifugalcompressors.Bothtwin-screwandsingle-screwcompressorsareusedinchillers.Thetwin-screwcompressorisalsocalledthehelicalrotarycompressor.Figure4.2.5showsacutawayofatwin-screwcompressordesign.Therearetwomainrotors(screws).Oneisdesignatedmale(4inthefigure)andtheotherfemale(6inthefigure).Thecompressionprocessisaccomplishedbyreducingthevolumeoftherefrigerantwiththerotarymotionofscrews.Atthelowpressuresideofthecompressor,avoidiscreatedwhentherotorsbegintounmesh.Lowpressuregasisdrawnintothevoidbetweentherotors.Astherotorscontinuetoturn,thegasisprogressivelycompressedasitmovestowardthedischargeport.Oncereachingapredeterminedvolumeratio,thedischargeportisuncoveredandthegasisdischargedintothehighpressuresideofthesystem.Atarotationspeedof3600rpm,ascrewcompressorhasover14,000dischargesperminute(ASHRAE,1996).Fixedsuctionanddischargeportsareusedwithscrewcompressorsinsteadofvalves,asusedinreciprocatingcompressors.Thesesetthebuilt-involumeratio—theratioofthevolumeoffluidspaceinthemeshingrotorsatthebeginningofthecompressionprocesstothevolumeintherotorsasthedischargeportisfirstexposed.Associatedwiththebuilt-involumeratioisapressureratiothatdependsonthepropertiesoftherefrigerantbeingcompressed.Screwcompressorshavethecapabilitytooperateatpressureratiosofabove20:1(ASHRAE,1996).Peakefficiencyisobtainedifthedischargepressureimposedbythesystemmatchesthepressuredevelopedbytherotorswhenthedischargeportisexposed.Iftheinterlobepressureinthescrewsisgreaterorlessthandischargepressure,energylossesoccurbutnoharmisdonetothecompressor.Capacitymodulationisaccomplishedbyslidevalvesthatprovideavariablesuctionbypassordelayedsuctionportclosing,reducingthevolumeofrefrigerantcompressed.Continuouslyvariablecapacitycontrolismostcommon,butsteppedcapacitycontrolisofferedinsomemanufacturers’machines.Variabledischargeportingisavailableonsomemachinestoallowcontrolofthebuilt-involumeratioduringoperation.Oilisusedinscrewcompressorstosealtheextensiveclearancespacesbetweentherotors,tocoolthemachines,toprovidelubrication,andtoserveashydraulicfluidforthecapacitycontrols.Anoilseparatorisrequiredforthecompressordischargeflowtoremovetheoilfromthehigh-pressurerefrigerantsothatperformanceofsystemheatexchangerswillnotbepenalizedandtheoilcanbereturnedforreinjectioninthecompressor.Screwcompressorscanbedirectdrivenattwo-polemotorspeeds(50or60Hz).Theirrotarymotionmakesthesemachinessmoothrunningandquiet.Reliabilityishighwhenthemachinesareappliedproperly.Screwcompressorsarecompactsotheycanbechangedoutreadilyforreplacementormaintenance.Theefficiencyofthebestscrewcompressorsmatchesorexceedsthatofthebestreciprocatingcompressorsatfullload.Highisentropicandvolumetricefficienciescanbeachievedwithscrewcompressorsbecausetherearenosuctionordischargevalvesandsmallclearancevolumes.ScrewcompressorsforbuildingapplicationsgenerallyuseeitherR-134aorR-22.译文冷水机组1995年,在美国,冷水机组应用在至少4%的商用建筑中。而且,由于制冷机组通常安装在较大的建筑中,在同一年里,制冷机组冷却了多于28%的商用建筑的地板空间(DOE,1998)。在商用建筑中普遍采用五种型式的制冷机:往复式、螺杆式、旋涡式、离心式和吸收式。前四种利用蒸汽压缩式循环来制得冷冻水。它们的不同主要在于使用的压缩机种类的不同。吸收式制冷机在吸收循环中利用热能(典型的是来自蒸汽或燃料燃烧)并利用氨-水或水-锂溴化物制得冷冻水。总的系统图4.2.2两台制冷机同时作用的系统图及辅助设备(格力有限公司)图4.2.2给出了包括主要辅助设备在内的复式制冷机的简图。大约86%的制冷机和表所示的一样用在多台制冷机系统中(Bitondo和Tozzi,1999)。在冷冻水系统中,建筑物的回水通过每个蒸发器循环流动,在蒸发器中,回水被冷却到合意的温度(典型的为4~7℃-)(39~45℉)。然后,冷冻水通过各设备传送到水-空气换热器。在换热器中,空气被冷冻水冷却和加湿。在这个过程中,冷水的温度升高,然后必须回送到蒸发器中。图4.2.2所示的制冷机组是冷水机组。水通过每个机组的冷凝器循环,在冷凝器中,水吸收了来自高压制冷剂的热量。接着,水用水泵打到冷却塔中,水通过蒸发而降温。冷却塔将在后一部分讲述。冷凝器也可以是空冷式的。在这种循环中,冷凝器应是制冷剂-空气热交换器,空气吸收来自高压制冷剂的热量。制冷机组名义制冷量为30~18000kw(8~5100tons)。在美国,出售的大部分制冷机组是用电的,利用蒸汽压缩制冷循环来制得冷冻水。在设计中,这种系统所使用的压缩机也有往复式、螺杆式、旋涡式和离心式。一小部分的离心式制冷机利用内燃机或蒸汽机代替电来启动压缩机。在建筑中所使用的制冷机组类型根据应用场所来确定。对于大的办公室建筑或制冷机组需服务于多个建筑时,通常使用离心式压缩机。在所需制冷量小于1000kw(280tons)时,使用往复式或螺杆式制冷机组较合适。在小的应用场合,若低于100kw(30tons)时,使用往复式或旋涡式制冷机组。蒸汽压缩式制冷机图4.2.3制冷机在各种不同满负荷百分数时的效率表4.2.5表示了四种电启动的蒸汽压缩式制冷机组的名义制冷量范围。每种制冷机以所使用的压缩机类型来命名。各种系统的制冷能力范围从最小的旋涡式(30kw,8tons)到最大的离心式(18000kw,5000tons)。制冷机可使用HCFCs(R22,R123)或HFCs(R-134a)制冷剂。制冷机的效率通常用输入功(用kw表示)与制冷量(用tons表示)的比值表示。1tons的制冷量等于3.52kw或1200btu/h。用这种方法衡量效率,其数值越小越好。从表4.2.5可以看出,离心式制冷机的效率最高。而往复式是这四种类型中效率最低的。表中所提供的效率是根据ASHRAEStandard30(ASHRAE,1995)在稳定状态下测得满负荷时的效率,这些效率中不包括辅助设备的能耗,比如泵,冷却塔的风机,而这些设备可以增加0.06~0.31kw/ton(Smitetal..,1996)。制冷机组在大部分时候是在部分负荷下运行的。只有在建筑物的最高热负荷时,制冷机才在额定制冷量附近运行。知道制冷机在部分负荷下效率是怎样变化的,这是很重要的。图4.2.3给出了往复式、螺杆式、旋涡式、带叶片控制的离心式制冷机组、压缩机频繁启动的制冷机组在满负荷时的百分比下相应的效率(用kw/ton表示)。往复式制冷机在占满负荷较小的百分比运行时,效率增加。相反地,带叶片控制的离心式的效率在负荷为额定负荷的60%以后是基本不变的,它的kw/ton值随百分数的减小而增加到满负荷时的两倍.1998年,空调制冷学会提出了一项新的标准,用来划归在部分负荷下制冷机组的运行情况。部分负荷时的效率用综合部分负荷值(IPLV)这个简单的数值来表示。IPLV在数值上和图4.2.3相似。用25%,50%,75%,100%负荷时的效率来计算这个简单的综合效率。在这些负荷下的度量值分别为0.12,0.45,0.42,0.01。IPLV的计算公式为IPLV=1/(0.01/A+0.42/B+0.45/C+0.12/D)其中A——100%负荷时的效率B——75%负荷时的效率C——50%负荷时的效率D——25%负荷时的效率大多数的IPLV由满负荷的50%,75%时的效率决定的,根据要求,制造商除了提供如图4.2.3所示部分负荷时的效率,还会提供IPLV值。以下对使用在蒸汽压缩式制冷机中的四种压缩机做简要的讲述。离心式和螺杆式压缩机主要应用在制冷机组上。往复式和旋涡式压缩机应用在整体式空调和热泵中。往复式压缩机图4.2.4往复式压缩机容积-压力的关系往复式压缩机是一种有确定排量的压缩机。在活塞的进气冲程时,一定量的气体被吸进气缸。在压缩冲程时,气体被压缩直到排气阀打开。在每个冲程被压缩的气体数量等于气缸的体积。在制冷机中使用的压缩机根据压
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧城市项目实施方案及管理办法
- 工程资料整合外包
- 专业宣传册印刷服务合同
- 工程进度承诺函模板
- 招标方案编写要领
- 我国建筑劳务分包的现状与发展
- 粉墙抹面工程劳务外包协议
- 工业用管道材料供应
- 装修工程劳务分包合同范本图片
- 岗位责任我来肩负
- 2024年度石料供应框架协议
- 2024年度技术开发合同违约处理3篇
- 办公家具无偿租赁合同
- 卧式椭圆封头储罐液位体积对照表
- 《家庭安全用电培训》课件
- 人教版数学一年级上册 前后上下左右专项练习题(试题)
- 【初中道法】树立正确的人生目标(课件)-2024-2025学年七年级道德与法治上册(统编版2024)
- 全国自考社会经济调查方法与应用真题
- 钢结构施工方案编制指南
- 英语演讲技巧与实训学习通超星期末考试答案章节答案2024年
- 智慧水产养殖解决方案10.9
评论
0/150
提交评论